Skip to main content

Aluminium Hybrid Composites Reinforced with SiC and Fly Ash Particles—Recent Developments

  • Chapter
  • First Online:
Recent Advances in Layered Materials and Structures

Abstract

The development of aluminium matrix composite (AMC) continues for growing demand of lightweight materials with high strength. Enhancement of the properties of AMCs has been done by changing the types and sizes of reinforcements, wt%, fabrication route and secondary treatment. This chapter provides an overview on the outcome of previous literatures focusing on silicon carbide (ceramic) and fly ash (industrial waste) reinforced AMCs and HAMCs (hybrid). SiC as reinforcement imparts superior mechanical and tribological behaviour in aluminium alloy. Fly ash addition into Al-matrix also has potential in lowering the production cost and density while improving strength. This chapter also highlights the results of nanoparticle size used over conventional micro-particles in the field of AMC development. The influence of processing parameters, mixing percentage of reinforcements, operating conditions and responsible tribological factors are thoroughly discussed. Finally, conclusions have been drawn to recognize the expandable areas of research on AMCs or HAMCs reinforced with SiC and fly ash.

http://orcid.org/0000-0002-1538-0646, http://orcid.org/0000-0003-4207-1176

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Admile B, Kulkarni K, Sonawane SA (2014) Application of Taguchi method for optimization of process parameters for wear loss of LM25/flyash composite. Int J Innov Eng Technol (IJIET) Appl 4(4):24–29

    Google Scholar 

  2. Alaneme KK, Ademilua BO, Bodunrin MO (2013) Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with silicon carbide and bamboo leaf ash. Tribol Ind 35(1):25–35

    Google Scholar 

  3. Alaneme KK, Aluko AO (2012) Fracture toughness (K 1C) and tensile properties of as-cast and age-hardened aluminium (6063) silicon carbide particulate composites. Scientia Iranica 19(4):992–996. https://doi.org/10.1016/j.scient.2012.06.001

  4. Alaneme KK, Ekperusi JO, Oke SR (2018) Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide. J King Saud Univ Eng Sci 30(4):391–397. https://doi.org/10.1016/j.jksues.2016.08.001

    Article  Google Scholar 

  5. Alaneme KK, Sanusi KO (2015) Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite. Eng Sci Technol Int J 18(3):416–422. https://doi.org/10.1016/j.jestch.2015.02.003

    Article  Google Scholar 

  6. Alpas AT, Zhang J (1992) Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys (A356). Wear 155(1):83–104. https://doi.org/10.1016/0043-1648(92)90111-K

    Article  CAS  Google Scholar 

  7. Amirkhanlou S, Niroumand B (2010) Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Trans Nonferrous Metals Soc China (English Edition) 20(suppl. 3):s788–s793. https://doi.org/10.1016/S1003-6326(10)60582-1

  8. Amouri K et al (2016) ‘Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique. Mater Sci Eng A 674:569–578. https://doi.org/10.1016/j.msea.2016.08.027

    Article  CAS  Google Scholar 

  9. Anand Babu K, Venkataramaiah P, Dharma Reddy K (2018) Mechanical characterization of aluminium hybrid metal matrix composites synthesized by using stir casting process. Mater Today Proc 5(14):28155–28163. https://doi.org/10.1016/j.matpr.2018.10.058

    Article  CAS  Google Scholar 

  10. Bahrami M et al (2014) On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Mater Design 53:519–527. https://doi.org/10.1016/j.matdes.2013.07.049

    Article  CAS  Google Scholar 

  11. Bahrami M, Dehghani K, Besharati Givi MK (2014) ‘A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique . Mater Design 53:217–225. https://doi.org/10.1016/j.matdes.2013.07.006

    Article  CAS  Google Scholar 

  12. Bai BNP, Ramasesh BS, Surappa MK (1992) Dry sliding wear of A356-Al-SiCp composites. Wear 157(2):295–304. https://doi.org/10.1016/0043-1648(92)90068-J

    Article  CAS  Google Scholar 

  13. Bajpai G et al (2017) Investigation and testing of mechanical properties of Al-Nano SiC composites through cold isostatic compaction process. Mater Today Proc 4(2):2723–2732. https://doi.org/10.1016/j.matpr.2017.02.149

    Article  Google Scholar 

  14. Balasubramanian I, Maheswaran R (2015) Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites. Mater Design 65:511–520. https://doi.org/10.1016/j.matdes.2014.09.067

    Article  CAS  Google Scholar 

  15. Bathula S, Saravanan M, Dhar A (2012) Nanoindentation and wear characteristics of Al 5083/SiCp nanocomposites synthesized by high energy ball milling and spark plasma sintering. J Mater Sci Technol 28(11):969–975. https://doi.org/10.1016/S1005-0302(12)60160-1

    Article  Google Scholar 

  16. Bhandakkar A, Prasad RC, Sastry SML (2014) Fracture toughness of AA2024 aluminum fly ash metal matrix composites. Int J Compos Mater 4(2):108–124. https://doi.org/10.5923/j.cmaterials.20140402.10

    Article  Google Scholar 

  17. Bhoi NK, Singh H, Pratap S (2019) Developments in the aluminum metal matrix composites reinforced by micro/nano particles—a review. J Compos Mater 2199831986530. https://doi.org/10.1177/0021998319865307

  18. Bieniaś J et al (2003) Microstructure and corrosion behaviour of aluminum fly ash composites. J Optoelectron Adv Mater 5(2):493–502

    Google Scholar 

  19. Bodunrin MO, Alaneme KK, Chown LH (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mater Res Technol 4(4):434–445. https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  CAS  Google Scholar 

  20. Candan E, Ahlatci H, Çïmenoǧlu H (2001) Abrasive wear behaviour of Al-SiC composites produced by pressure infiltration technique. Wear 247(2):133–138. https://doi.org/10.1016/S0043-1648(00)00499-3

    Article  CAS  Google Scholar 

  21. Carreño-Gallardo C et al (2014) Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. J Alloy Compd 586(SUPPL. 1):68–72. https://doi.org/10.1016/j.jallcom.2013.03.232

    Article  CAS  Google Scholar 

  22. Charles S, Arunachalam VP (2004) Property analysis and mathematical modeling of machining properties of aluminium alloy hybrid (Al-alloy/SiC/flyash) composites produced by liquid metallurgy and powder metallurgy techniques. Indian J Eng Mater Sci 11(6):473–480

    CAS  Google Scholar 

  23. Darmiani E et al (2013) Reciprocating wear resistance of Al-SiC nano-composite fabricated by accumulative roll bonding process. Mater Des 50:497–502. https://doi.org/10.1016/j.matdes.2013.03.047

    Article  CAS  Google Scholar 

  24. Dasgupta R, Meenai H (2005) SiC particulate dispersed composites of an Al-Zn-Mg-Cu alloy: Property comparison with parent alloy. Mater Charact 54(4–5):438–445. https://doi.org/10.1016/j.matchar.2005.01.012

    Article  CAS  Google Scholar 

  25. David Raja Selvam J, Robinson Smart DS, Dinaharan I (2013) Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting. Mater Design 49:28–34.https://doi.org/10.1016/j.matdes.2013.01.053

  26. Deb S, Panigrahi SK, Weiss M (2018) Development of bulk ultrafine grained Al-SiC nano composite sheets by a SPD based hybrid process: experimental and theoretical studies. Mater Sci Eng A 738:323–334. https://doi.org/10.1016/j.msea.2018.09.101

  27. Dehghan Hamedan A, Shahmiri M (2012) ‘Production of A356–1wt% SiC nanocomposite by the modified stir casting method. Mater Sci Eng A 556:921–926. https://doi.org/10.1016/j.msea.2012.07.093

    Article  CAS  Google Scholar 

  28. Dehnavi MR et al (2014) Effects of continuous and discontinuous ultrasonic treatments on mechanical properties and microstructural characteristics of cast Al413-SiCnp nanocomposite. Mater Sci Eng A 617:73–83. https://doi.org/10.1016/j.msea.2014.08.042

    Article  CAS  Google Scholar 

  29. Dong PY et al (2013) Microstructures and properties of A356–10%SiC particle composite castings at different solidification pressures. Trans Nonferrous Metals Soc China (English Edition) 23(8):2222–2228. https://doi.org/10.1016/S1003-6326(13)62721-1

  30. Dong X, Shin YC (2017) Multi-scale modeling of thermal conductivity of SiC-reinforced aluminum metal matrix composite. J Compos Mater 51(28):3941–3953. https://doi.org/10.1177/0021998317695873

    Article  CAS  Google Scholar 

  31. Dou Z et al (2007) Electromagnetic shielding effectiveness of aluminum alloy-fly ash composites. Compos A Appl Sci Manuf 38(1):186–191. https://doi.org/10.1016/j.compositesa.2006.01.015

    Article  CAS  Google Scholar 

  32. Dwivedi SP, Sharma S, Mishra RK (2014) Microstructure and mechanical behavior of A356/SiC/Fly-ash hybrid composites produced by electromagnetic stir casting. J Brazilian Soc Mech Sci Eng 37(1):57–67. https://doi.org/10.1007/s40430-014-0138-y

    Article  CAS  Google Scholar 

  33. El-Daly AA et al (2012) Synthesis of Al/SiC nanocomposite and evaluation of its mechanical properties using pulse echo overlap method. J Alloys Cmpd 542:51–58. https://doi.org/10.1016/j.jallcom.2012.07.102

  34. El-Kady O, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites . Mater Design 54:348–353. https://doi.org/10.1016/j.matdes.2013.08.049

    Article  CAS  Google Scholar 

  35. Elkady OA et al (2019) Microwave absorbing efficiency of Al matrix composite reinforced with nano-Ni/SiC particles. Results Phys 12:687–700. https://doi.org/10.1016/j.rinp.2018.11.095

    Article  Google Scholar 

  36. Escalera-Lozano R et al (2007) Corrosion characteristics of hybrid Al/SiCp/MgAl2O4 composites fabricated with fly ash and recycled aluminum. Mater Charact 58(10):953–960. https://doi.org/10.1016/j.matchar.2006.09.012

    Article  CAS  Google Scholar 

  37. Fadavi Boostani A et al (2016) Solvothermal-assisted graphene encapsulation of SiC nanoparticles: a new horizon toward toughening aluminium matrix nanocomposites. Mater Sci Eng A 653:99–107. https://doi.org/10.1016/j.msea.2015.12.008

    Article  CAS  Google Scholar 

  38. Ghosh S, Sahoo P, Sutradhar G (2012) Wear behaviour of Al-SiCp metal matrix composites and optimization using taguchi method and grey relational analysis. J Miner Mater Charact Eng 11(11):1085–1094. https://doi.org/10.4236/jmmce.2012.1111115

    Article  Google Scholar 

  39. Ghosh S, Sahoo P, Sutradhar G (2013) Friction performance of Al-10 % SiCp reinforced metal matrix composites using taguchi method. ISRN Tribol 2013:1–9. https://doi.org/10.5402/2013/386861

    Article  CAS  Google Scholar 

  40. Ghosh S, Sahoo P, Sutradhar G (2014) Tribological properties of Al–SiC metal matrix composites: a comparison between sand cast and squeeze cast techniques. J Inst Eng (India): Series D 95(2):161–171. https://doi.org/10.1007/s40033-014-0044-6

  41. Gikunoo E, Omotoso O, Oguocha INA (2005) Effect of fly ash particles on the mechanical properties of aluminium casting alloy A535. Mater Sci Technol 21(2):143–152. https://doi.org/10.1179/174328405X18601

    Article  CAS  Google Scholar 

  42. Gosangi NR, Dumpala L (2019) Characterization of friction stir welded AL6063/nano fly ash composite. Mater Res Exp 6(7). https://doi.org/10.1088/2053-1591/ab179b

  43. Govindarao R et al (2015) Development of a novel aluminium based metal matrix composite using insitu ternary mixture (Al2O3-SiC-C) prepared by thermal treatment of fly-ash . Trans Indian Inst Metals 68(5):951–958. https://doi.org/10.1007/s12666-015-0532-x

    Article  CAS  Google Scholar 

  44. Guo RQ, Rohatgi PK (1998) Chemical reactions between aluminum and fly ash during synthesis and reheating of AI-fly ash composite. Metall Mater Trans B 29(3):519–525. https://doi.org/10.1007/s11663-998-0086-y

    Article  Google Scholar 

  45. Hassan AM et al (2009) Wear behavior of Al-Mg-Cu-based composites containing SiC particles. Tribol Int 42(8):1230–1238. https://doi.org/10.1016/j.triboint.2009.04.030

    Article  CAS  Google Scholar 

  46. Hu Q, Zhao H, Li F (2016) Microstructures and properties of SiC particles reinforced aluminum-matrix composites fabricated by vacuum-assisted high pressure die casting. Mater Sci Eng A 680:270–277. https://doi.org/10.1016/j.msea.2016.10.090

    Article  CAS  Google Scholar 

  47. Huang C-W, Huang Y-F, Aoh J-N (2019) Strengthening mechanisms of aluminum matrix composite containing Cu-coated SiC particles produced by friction stir processing . J Chin Inst Eng 42(8):653–663. https://doi.org/10.1080/02533839.2019.1660231

    Article  CAS  Google Scholar 

  48. Huang CW, Aoh JN (2018) Friction stir processing of copper-coated SiC particulate-reinforced aluminum matrix composite. Materials 11(4). https://doi.org/10.3390/ma11040599

  49. Idrisi AH, Mourad AHI (2019) Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. J Alloys Cmpd 805:502–508. https://doi.org/10.1016/j.jallcom.2019.07.076

  50. Itskos G et al (2012) Synthesis of A356 Al-high-Ca fly ash composites by pressure infiltration technique and their characterization. J Mater Sci 47(9):4042–4052. https://doi.org/10.1007/s10853-012-6258-9

    Article  CAS  Google Scholar 

  51. Jiang J, Wang Y (2015) Microstructure and mechanical properties of the semisolid slurries and rheoformed component of nano-sized SiC/7075 aluminum matrix composite prepared by ultrasonic-assisted semisolid stirring. Mater Sci Eng A 639:350–358. https://doi.org/10.1016/j.msea.2015.04.064

    Article  CAS  Google Scholar 

  52. Kanth UR, Rao PS, Krishna MG (2019) Mechanical behaviour of fly ash/SiC particles reinforced Al-Zn alloy-based metal matrix composites fabricated by stir casting method. J Mater Res Technol 8(1):737–744. https://doi.org/10.1016/j.jmrt.2018.06.003

    Article  CAS  Google Scholar 

  53. Katrenipadu SP, Gurugubelli SN (2019) Regression modeling on wear behaviour of nano fly ash—Aluminium alloy matrix composites. Emerg Mater Res 8(3). https://doi.org/10.1680/jemmr.19.00005

  54. Khan MM, Dixit G (2017) Comparative study on erosive wear response of SiC reinforced and fly ash reinforced aluminium based metal matrix composite. Mater Today Proc 4(9):10093–10098. https://doi.org/10.1016/j.matpr.2017.06.327

    Article  Google Scholar 

  55. Kiliçkap E et al (2005) Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. J Mater Process Technol 164–165:862–867. https://doi.org/10.1016/j.jmatprotec.2005.02.109

    Article  CAS  Google Scholar 

  56. Kiourtsidis GE, Skolianos SM (2002) Wear behavior of artificially aged AA2024/40 μm SiCp composites in comparison with conventionally wear resistant ferrous materials. Wear 253(9–10):946–956. https://doi.org/10.1016/S0043-1648(02)00216-8

    Article  CAS  Google Scholar 

  57. Kiourtsidis GE, Skolianos SM, Litsardakis GA (2004) Aging response of aluminium alloy 2024/silicon carbide particles (SiCp) composites. Mater Sci Eng A 382(1–2):351–361. https://doi.org/10.1016/j.msea.2004.05.021

    Article  CAS  Google Scholar 

  58. Kiourtsidis G, Skolianos SM (1998) Corrosion behavior of squeeze-cast silicon carbide-2024 composites in aerated 3.5 wt.% sodium chloride. Mater Sci Eng A 248(1–2):165–172. https://doi.org/10.1016/S0921-5093(98)00494-8

    Article  Google Scholar 

  59. Knowles AJ et al (2014) Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J Alloys Cmpd 615(S1):S401–S405. https://doi.org/10.1016/j.jallcom.2014.01.134

  60. Kollo L et al (2010) Investigation of planetary milling for nano-silicon carbide reinforced aluminium metal matrix composites. J Alloy Compd 489(2):394–400. https://doi.org/10.1016/j.jallcom.2009.09.128

    Article  CAS  Google Scholar 

  61. Kollo L et al (2011) Nano-silicon carbide reinforced aluminium produced by high-energy milling and hot consolidation. Mater Sci Eng A 528(21):6606–6615. https://doi.org/10.1016/j.msea.2011.05.037

    Article  CAS  Google Scholar 

  62. Kountouras DT et al (2013) Fly ash permeability during liquid AA7075 infiltration, as a reutilization method for novel MMCs. J Mater Eng Perform 22(8):2210–2218. https://doi.org/10.1007/s11665-013-0502-6

    Article  CAS  Google Scholar 

  63. Kountouras DT et al (2015) Properties of high volume fraction fly ash/al alloy composites produced by infiltration process . J Mater Eng Perfor 24(9):3315–3322. https://doi.org/10.1007/s11665-015-1612-0

    Article  CAS  Google Scholar 

  64. Kumarasamy SP et al (2017) Investigations on mechanical and machinability behavior of aluminum/flyash cenosphere/Gr hybrid composites processed through compocasting. J Appl Res Technol 15(5):430–441. https://doi.org/10.1016/j.jart.2017.05.005

  65. Kurapati VB, Kommineni R (2017) Effect of wear parameters on dry sliding behavior of Fly Ash/SiC particles reinforced AA 2024 hybrid composites. Mater Res Exp 4(9). https://doi.org/10.1088/2053-1591/aa8a3e

  66. Kurapati VB, Kommineni R, Sundarrajan S (2018) Statistical analysis and mathematical modeling of dry sliding wear parameters of 2024 aluminium hybrid composites reinforced with fly ash and SiC particles. Trans Indian Inst Metals 71(7):1809–1825. https://doi.org/10.1007/s12666-018-1322-z

    Article  CAS  Google Scholar 

  67. Mahendra KV, Radhakrishna K (2007) Fabrication of Al-4.5% Cu alloy with fly ash metal matrix composites and its characterization. Mater Sci Poland 25(1):57–68

    CAS  Google Scholar 

  68. Mahendra KV, Radhakrishna K (2010) Characterization of stir cast Al-Cu-(fly ash + SiC) hybrid metal matrix Composites. J Compos Mater 44(8):989–1005. https://doi.org/10.1177/0021998309346386

    Article  CAS  Google Scholar 

  69. Mahendra Boopathi M, Arulshri KP, Iyandurai N (2013) Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. Am J Appl Sci 10(3):219–229. https://doi.org/10.3844/ajassp.2013.219.229

    Article  CAS  Google Scholar 

  70. Manivannan I et al (2017) Tribological and surface behavior of silicon carbide reinforced aluminum matrix nanocomposite. Surf Interfaces 8(February):127–136. https://doi.org/10.1016/j.surfin.2017.05.007

    Article  CAS  Google Scholar 

  71. Marin E et al (2012) Electrochemical study of aluminum-fly ash composites obtained by powder metallurgy. Mater Charact 69:16–30. https://doi.org/10.1016/j.matchar.2012.04.004

  72. Mazahery A, Shabani MO (2012) Characterization of cast A356 alloy reinforced with nano SiC composites. Trans Nonferrous Metals Soc China (English Edition) 22(2):275–280. https://doi.org/10.1016/S1003-6326(11)61171-0

  73. Mazahery A, Shabani MO (2013) Plasticity and microstructure of A356 matrix nano composites’. J King Saud Univ Eng Sci 25(1):41–48. https://doi.org/10.1016/j.jksues.2011.11.001

    Article  Google Scholar 

  74. Moazami-Goudarzi M, Akhlaghi F (2016) Wear behavior of Al 5252 alloy reinforced with micrometric and nanometric SiC particles . Tribol Int 102:28–37. https://doi.org/10.1016/j.triboint.2016.05.013

    Article  CAS  Google Scholar 

  75. Mosleh-Shirazi S, Akhlaghi F, Li DY (2016) Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites. Trans Nonferrous Metals Soc China (English Edition) 26(7):1801–1808. https://doi.org/10.1016/S1003-6326(16)64294-2

  76. Mousavi Abarghouie SMR, Seyed Reihani SM (2010) Investigation of friction and wear behaviors of 2024 Al and 2024 Al/SiCp composite at elevated temperatures. J Alloys Cmpd 501(2):326–332. https://doi.org/10.1016/j.jallcom.2010.04.097

  77. Moutsatsou A et al (2010) Microstructural characterization of PM-Al and PM-Al/Si composites reinforced with lignite fly ash. Mater Sci Eng A 527(18–19):4788–4795. https://doi.org/10.1016/j.msea.2010.04.001

  78. Narasimha Murthy I, Venkata Rao D, Babu Rao J (2012) Microstructure and mechanical properties of aluminum-fly ash nano composites made by ultrasonic method. Mater Des 35:55–65. https://doi.org/10.1016/j.matdes.2011.10.019

    Article  CAS  Google Scholar 

  79. Natarajan N, Vijayarangan S, Rajendran I (2006) Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear 261(7–8):812–822. https://doi.org/10.1016/j.wear.2006.01.011

    Article  CAS  Google Scholar 

  80. Ozben T, Kilickap E, Çakir O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1–3):220–225. https://doi.org/10.1016/j.jmatprotec.2007.06.082

    Article  CAS  Google Scholar 

  81. Ozden S, Ekici R, Nair F (2007) Investigation of impact behaviour of aluminium based SiC particle reinforced metal-matrix composites. Compos A Appl Sci Manuf 38(2):484–494. https://doi.org/10.1016/j.compositesa.2006.02.026

    Article  CAS  Google Scholar 

  82. Palanikumar K, Karthikeyan R (2007) Assessment of factors influencing surface roughness on the machining of Al/SiC particulate composites. Mater Des 28(5):1584–1591. https://doi.org/10.1016/j.matdes.2006.02.010

    Article  CAS  Google Scholar 

  83. Palanisamy S, Ramanathan S, Rangaraj R (2013) Analysis of dry sliding wear behaviour of aluminium-fly ash composites: the Taguchi approach. Adv Mech Eng. https://doi.org/10.1155/2013/658085

  84. Prabu SB et al (2006) Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. J Mater Process Technol 171(2):268–273. https://doi.org/10.1016/j.jmatprotec.2005.06.071

    Article  CAS  Google Scholar 

  85. Rajan TPD et al (2007) Fabrication and characterisation of Al-7Si-0.35Mg/fly ash metal matrix composites processed by different stir casting routes. Compos Sci Technol 67(15–16):3369–3377. https://doi.org/10.1016/j.compscitech.2007.03.028

    Article  CAS  Google Scholar 

  86. Ramachandra M, Radhakrishna K (2005) Synthesis-microstructure-mechanical properties-wear and corrosion behavior of an Al-Si (12%)-Flyash metal matrix composite. J Mater Sci 40(22):5989–5997. https://doi.org/10.1007/s10853-005-1303-6

    Article  CAS  Google Scholar 

  87. Ramnath BV et al (2014) Aluminium metal matrix composites - A review. Rev Adv Mater Sci 38(1):55–60

    CAS  Google Scholar 

  88. Rao RN et al (2013) Dry sliding wear maps for AA7010 (Al-Zn-Mg-Cu) aluminium matrix composite. Tribol Int 60:77–82. https://doi.org/10.1016/j.triboint.2012.10.007

    Article  CAS  Google Scholar 

  89. Rao RN, Das S (2011) Effect of applied pressure on the tribological behaviour of SiCp reinforced AA2024 alloy. Tribol Int 44(4):454–462. https://doi.org/10.1016/j.triboint.2010.11.018

    Article  CAS  Google Scholar 

  90. Razzaq AM et al (2017) Effect of fly ash addition on the physical and mechanical properties of AA6063 alloy reinforcement. Metals 7(11):1–15. https://doi.org/10.3390/met7110477

    Article  CAS  Google Scholar 

  91. Razzaq AM et al (2019) Influence of fly ash on the microstructure and mechanical properties of AA6063 alloy using compocasting technique. Mater Exp 9(1):1–14. https://doi.org/10.1166/mex.2019.1467

    Article  CAS  Google Scholar 

  92. Reddy BR, Srinivas C (2018) Fabrication and characterization of silicon carbide and fly ash reinforced aluminium metal matrix hybrid composites. Mater Today Proc 5(2):8374–8381. https://doi.org/10.1016/j.matpr.2017.11.531

    Article  CAS  Google Scholar 

  93. Reddy G et al (2016) Cast and age hardening behaviour of Al6061 alloy reinforced with an in-situ ceramic composite prepared by carbo thermal reduction of fly ash in plasma reactor. J Compos Mater 50(22):3027–3041. https://doi.org/10.1177/0021998315615203

    Article  CAS  Google Scholar 

  94. Reddy MP et al (2017) Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog Nat Sci Mater Int 27(5):606–614. https://doi.org/10.1016/j.pnsc.2017.08.015

  95. Reihani SMS (2006) Processing of squeeze cast Al6061-30vol% SiC composites and their characterization. Mater Des 27(3):216–222. https://doi.org/10.1016/j.matdes.2004.10.016

    Article  CAS  Google Scholar 

  96. Rohatgi PK et al (1997) Friction and abrasion resistance of cast aluminum alloy-fly ash composites. Metall Mater Trans A 28(1):245–250. https://doi.org/10.1007/s11661-997-0102-x

    Article  Google Scholar 

  97. Rohatgi PK, Gupta N, Alaraj S (2006) Thermal expansion of aluminum-fly ash cenosphere composites synthesized by pressure infiltration echnique. J Compos Mater 40(13):1163–1174. https://doi.org/10.1177/0021998305057379

    Article  CAS  Google Scholar 

  98. Rohatgi PK, Kim JK, Gupta N, Alaraj S, Daoud A (2006) Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Compos A Appl Sci Manuf 37(3):430–437. https://doi.org/10.1016/j.compositesa.2005.05.047

    Article  CAS  Google Scholar 

  99. Saenpong P et al (2018) Microstructures and hardness of A356-SiC composites produced by the mechanical stir casting. Mater Today Proc 5(3):9489–9496. https://doi.org/10.1016/j.matpr.2017.10.129

    Article  CAS  Google Scholar 

  100. Saheb DA (2011) Aluminum silicon carbide and aluminum graphite particulate composites. J Eng Appl Sci 6(10):41–46

    Google Scholar 

  101. Şahin Y (2010) Abrasive wear behaviour of SiC/2014 aluminium composite. Tribol Int 43(5–6):939–943. https://doi.org/10.1016/j.triboint.2009.12.056

    Article  CAS  Google Scholar 

  102. Salehi M, Farnoush H, Mohandesi JA (2014) Fabrication and characterization of functionally graded Al-SiC nanocomposite by using a novel multistep friction stir processing . Mater Des 63:419–426. https://doi.org/10.1016/j.matdes.2014.06.013

    Article  CAS  Google Scholar 

  103. Salehi M, Saadatmand M, Aghazadeh Mohandesi J (2012) Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing. Trans Nonferrous Metals Soc China (English Edition) 22(5):1055–1063. https://doi.org/10.1016/S1003-6326(11)61283-1

  104. Sarkar S et al (2010) Studies on aluminum-Fly-ash composite produced by impeller mixing. J Reinf Plast Compos 29(1):144–148. https://doi.org/10.1177/0731684408096428

    Article  CAS  Google Scholar 

  105. Selvam DRJ, Dinaharan DRI (2013) Synthesis and characterization of Al6061-Fly Ashp-SiCp composites by stir casting and compocasting methods. Energy Procedia 34:637–646. https://doi.org/10.1016/j.egypro.2013.06.795

  106. Selvam JDR, Smart DSR, Dinaharan I (2016) Influence of fly ash particles on dry sliding wear behaviour of AA6061 aluminium alloy. Kovove Materialy 54(3):175–183. https://doi.org/10.4149/km20163175

    Article  CAS  Google Scholar 

  107. Shaikh MBN, Arif S, Siddiqui MA (2018) Fabrication and characterization of aluminium hybrid composites reinforced with fly ash and silicon carbide through powder metallurgy. Mater Res Exp 5(4):46506. https://doi.org/10.1088/2053-1591/aab829

    Article  CAS  Google Scholar 

  108. Shanmughasundaram P, Subramanian R, Prabhu G (2011) Some studies on aluminium-Fly ash composites fabricated by two step stir casting method. Eur J Sci Res 63(2):204–218

    Google Scholar 

  109. Sharma VK, Singh RC, Chaudhary R (2017) ‘Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites. Eng Sci Technol Int J 20(4):1318–1323. https://doi.org/10.1016/j.jestch.2017.08.004

    Article  Google Scholar 

  110. Sherif El-Eskandarany M (1998) Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites. J Alloy Compd 279(2):263–271. https://doi.org/10.1016/S0925-8388(98)00658-6

    Article  CAS  Google Scholar 

  111. Singh IB et al (2009) Influence of SiC particles addition on the corrosion behavior of 2014 Al-Cu alloy in 3.5% NaCl solution. Corros Sci 51(2):234–241. https://doi.org/10.1016/j.corsci.2008.11.001

    Article  CAS  Google Scholar 

  112. Singh J, Chauhan A (2016) Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram Int 42(1):56–81. https://doi.org/10.1016/j.ceramint.2015.08.150

    Article  CAS  Google Scholar 

  113. Singh J, Chauhan A (2017) Fabrication characteristics and tensile strength of novel Al2024/SiC/red mud composites processed via stir casting route. Trans Nonferrous Metals Soc China (English Edition) 27(12):2573–2586. https://doi.org/10.1016/S1003-6326(17)60285-1

  114. Singh S, Singh R, Gill SS (2019) Investigations for surface hardness of aluminum matrix composites with hybrid reinforcement. Trans Indian Inst Met 72(1):181–190. https://doi.org/10.1007/s12666-018-1472-z

    Article  CAS  Google Scholar 

  115. Singh VK et al (2015) Enhancement of wettability of aluminum based silicon carbide reinforced particulate metal matrix composite. High Temp Mater Processes (London) 34(2):163–170. https://doi.org/10.1515/htmp-2014-0043

    Article  CAS  Google Scholar 

  116. Song M (2009) Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans Nonferrous Metals Soc China (English Edition) 19(6):1400–1404. https://doi.org/10.1016/S1003-6326(09)60040-6

  117. Souvignier CW et al (2001) Freeform fabrication of aluminum metal-matrix composites. J Mater Res 16(9):2613–2618. https://doi.org/10.1557/JMR.2001.0359

    Article  CAS  Google Scholar 

  118. Subarmono S et al (2010) Mechanical properties of aluminum/fly ash composites produced by hot extrusion. Mater Sci Res India 7(1):95–100. https://doi.org/10.13005/msri/070110

    Article  CAS  Google Scholar 

  119. Sudarshan, Surappa MK (2008) Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater Sci Eng A 480(1–2):117–124. https://doi.org/10.1016/j.msea.2007.06.068

  120. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana Acad Proc Eng Sci 28(1–2):319–334. https://doi.org/10.1007/BF02717141

    Article  CAS  Google Scholar 

  121. Suresh N, Venkateswaran S, Seetharamu S (2011) Studies on eutectic Al-Si alloy-flyash composites. Int J Cast Met Res 24(2):118–123. https://doi.org/10.1179/1743133610Y.0000000013

    Article  CAS  Google Scholar 

  122. Taherzadeh Mousavian R et al (2016) Fabrication of aluminum matrix composites reinforced with nano- to micrometer-sized SiC particles. Mater Des 89:58–70. https://doi.org/10.1016/j.matdes.2015.09.130

    Article  CAS  Google Scholar 

  123. Tan M et al (2001) Influence of SiC and Al2O3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites. J Mater Sci 36(8):2045–2053. https://doi.org/10.1023/A:1017591117670

    Article  CAS  Google Scholar 

  124. Tang F, Hagiwara M, Schoenung JM (2005) Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling. Mater Sci Eng A 407(1–2):306–314. https://doi.org/10.1016/j.msea.2005.07.056

    Article  CAS  Google Scholar 

  125. Thünemann M et al (2007) Aluminum matrix composites based on preceramic-polymer-bonded SiC preforms. Compos Sci Technol 67(11–12):2377–2383. https://doi.org/10.1016/j.compscitech.2007.01.001

    Article  CAS  Google Scholar 

  126. Tzamtzis S et al (2009) ‘Processing of advanced Al/SiC particulate metal matrix composites under intensive shearing - A novel Rheo-process. Compos A Appl Sci Manuf 40(2):144–151. https://doi.org/10.1016/j.compositesa.2008.10.017

    Article  CAS  Google Scholar 

  127. Uju WA, Oguocha INA (2012) A study of thermal expansion of Al-Mg alloy composites containing fly ash. Mater Des 33(1):503–509. https://doi.org/10.1016/j.matdes.2011.04.056

    Article  CAS  Google Scholar 

  128. Veeresh Kumar GB, Rao CSP, Selvaraj N (2012) Studies on mechanical and dry sliding wear of Al6061-SiC composites. Compos B Eng 43(3):1185–1191. https://doi.org/10.1016/j.compositesb.2011.08.046

    Article  CAS  Google Scholar 

  129. Venkatachalam G, Kumaravel A (2017) Mechanical behaviour of aluminium alloy reinforced with SiC/Fly ash/basalt composite for brake rotor. Polym Polym Compos 25(3):203–208. https://doi.org/10.1177/096739111702500304

    Article  CAS  Google Scholar 

  130. Walczak M, Pieniak D, Zwierzchowski M (2015) ‘The tribological characteristics of SiC particle reinforced aluminium composites. Arch Civil Mech Eng. Politechnika Wrocławska 15(1):116–123. https://doi.org/10.1016/j.acme.2014.05.003

    Article  Google Scholar 

  131. Wang L et al (2017) Microstructures and tensile properties of nano-sized SiCp/Al-Cu composites fabricated by semisolid stirring assisted with hot extrusion. Mater Charact 131(5988):195–200. https://doi.org/10.1016/j.matchar.2017.07.013

    Article  CAS  Google Scholar 

  132. Wang Z et al (2011) Effects of particle size and distribution on the mechanical properties of SiC reinforced Al-Cu alloy composites. Mater Sci Eng A 528(3):1131–1137. https://doi.org/10.1016/j.msea.2010.11.028

  133. Xiong B et al (2011) Effects of SiC volume fraction and aluminum particulate size on interfacial reactions in SiC nanoparticulate reinforced aluminum matrix composites. J Alloys Cmpd 509(4):1187–1191. https://doi.org/10.1016/j.jallcom.2010.09.171

  134. Yang W et al (2015) Strengthening behavior in high content SiC nanowires reinforced Al composite. Mater Sci Eng A 648:41–46. https://doi.org/10.1016/j.msea.2015.09.043

    Article  CAS  Google Scholar 

  135. Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng A 380(1):378–383. https://doi.org/10.1016/j.msea.2004.03.073

    Article  CAS  Google Scholar 

  136. Yao X et al (2017) Effects of SiC nanoparticle content on the microstructure and tensile mechanical properties of ultrafine grained AA6063-SiCnp nanocomposites fabricated by powder metallurgy. J Mater Sci Technol 33(9):1023–1030. https://doi.org/10.1016/j.jmst.2016.09.022

    Article  CAS  Google Scholar 

  137. Yasutomi Y et al (1999) Effects of the SiC/Al interface reaction on fracture behavior of a composite conductor using SiC fiber reinforced aluminum for next generation power equipment. J Mater Sci 34(7):1583–1593. https://doi.org/10.1023/A:1004524516143

    Article  CAS  Google Scholar 

  138. Yuan D et al (2018) Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting. J Mater Process Technol 269:1–9. https://doi.org/10.1016/j.jmatprotec.2019.01.021

    Article  CAS  Google Scholar 

  139. Zhang LJ et al (2015) High strength and good ductility at elevated temperature of nano-SiCp/Al2014 composites fabricated by semi-solid stir casting combined with hot extrusion . Mater Sci Eng A 626:338–341. https://doi.org/10.1016/j.msea.2014.12.089

    Article  CAS  Google Scholar 

  140. Zhang Q et al (2004) Microstructure and thermal conduction properties of an Al-12Si matrix composite reinforced with dual sized SiC particles. J Mater Sci 39(1):303–305. https://doi.org/10.1023/B:JMSC.0000007761.85651.d6

    Article  CAS  Google Scholar 

  141. Zhang Liangchi MY-WZZ (1994) Modelling friction and wear of scratching ceramic particle-reinforced metal composites. Wear 176(94):231–237

    Google Scholar 

  142. Zulfia A et al (1999) Effect of hot isostatic pressing on cast A357 aluminium alloy with and without SiC particle reinforcement. J Mater Sci 34(17):4305–4310. https://doi.org/10.1023/A:1004675424845

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani Ranjan Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, B.R., Ghosh, S., Sahoo, P. (2021). Aluminium Hybrid Composites Reinforced with SiC and Fly Ash Particles—Recent Developments. In: Sahoo, S. (eds) Recent Advances in Layered Materials and Structures. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4550-8_6

Download citation

Publish with us

Policies and ethics