Skip to main content

Role of Lipid Nanocarriers in Lymphatic Targeting: Promises and Safety Considerations

  • Chapter
  • First Online:
Nanocarriers: Drug Delivery System

Abstract

The lymphatic system is an added circulatory system present in the body and has a significant role in the identification of immune system and its reaction to a disease. The treatment of disease of the lymphatic system requires drug administration to desired delivery site so that adverse effects are minimized because of nonspecific spread throughout the body. Moreover, for the drugs undergoing extensive hepatic first-pass metabolism, promoting the absorption through the lymphatic route proves to be an effective way for oral bioavailability enhancement. Different types of nanocarriers have been investigated for their ability to target the drug to the lymphatics. In spite of promising applications of nanomedicine, there are certain issues such as the fate of nanoparticles after lymphatic absorption and the potential toxicity concerns, which need to be addressed. Since nanoparticles possess extremely small size and large surface area, there is a drastic change in the physicochemical properties as well as distribution pattern of drug in the body. Moreover, nonbiodegradable nanocarriers may accumulate in human tissues and organs leading to toxicity. This chapter focuses on the importance of lymphatic targeting, various nanocarrier-based approaches and their mechanisms, factors affecting lymphatic transport, and their safety and toxicity evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abellan-Pose R, Teijeiro-Valino C, Santander-Ortega MJ et al (2016) Polyaminoacid nanocapsules for drug delivery to the lymphatic system: effect of the particle size. Int J Pharm 509:107–117

    Article  CAS  PubMed  Google Scholar 

  • Aboulfotouh K, Allam AA, El-badry M et al (2019) A self-nanoemulsifying drug delivery system for enhancing the oral bioavailability of candesartan Cilexetil: ex vivo and in vivo evaluation. J Pharm Sci 108:3599–3608

    Article  CAS  PubMed  Google Scholar 

  • Aji Alex MR, Chacko AJ, Jose S et al (2011) Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 42:11–18

    Article  CAS  PubMed  Google Scholar 

  • Akbarzadeh A, Rezaei-sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baek JS, Cho CW (2017) Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur J Pharm Biopharm 117:132–140

    Article  CAS  PubMed  Google Scholar 

  • Beloqui A, Del Pozo-rodriguez A, Isla A et al (2017) Nanostructured lipid carriers as oral delivery systems for poorly soluble drugs. J Drug Deliv Sci Technol 42:144–154

    Article  CAS  Google Scholar 

  • Butler MG, IsogaI S, Weinstein BM (2009) Lymphatic development. Birth Defects Res C Embryo Today 87:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Yang Q, Bagby TR et al (2011) Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev 63:901–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caliph SM, Charman WN, Porter CJ (2000) Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci 89:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Carey MC, Small DM, Bliss CM (1983) Lipid digestion and absorption. Annu Rev Physiol 45:651–677

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Shukla D, Mishra B et al (2009) Lipid—an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm 73:1–15

    Article  CAS  PubMed  Google Scholar 

  • Charman W, Stella V (1986) Estimating the maximal potential for intestinal lymphatic transport of lipophilic drug molecules. Int J Pharm 34:175–178

    Article  CAS  Google Scholar 

  • Choi I, Lee S, Hong YK (2012) The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2:a006445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coppi G, Iannuccelli V (2009) Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm 367:127–132

    Article  CAS  PubMed  Google Scholar 

  • Cox CE, Kiluk JV, Riker AI et al (2008) Significance of sentinel lymph node micrometastases in human breast cancer. J Am Coll Surg 206:261–268

    Article  PubMed  Google Scholar 

  • Datta K, Muders M, Zhang H et al (2010) Mechanism of lymph node metastasis in prostate cancer. Future Oncol 6:823–836

    Article  PubMed  Google Scholar 

  • Desai JL, Thakkar HP (2016) Effect of particle size on oral bioavailability of darunavir-loaded solid lipid nanoparticles. J Microencapsul 33:669–678

    Article  CAS  PubMed  Google Scholar 

  • Desai JL, Thakkar HP (2018) Darunavir-loaded lipid nanoparticles for targeting to HIV reservoirs. AAPS Pharm Sci Tech 19:648–660

    Article  CAS  Google Scholar 

  • Desai JL, Thakkar HP (2019) Enhanced oral bioavailability and brain uptake of Darunavir using lipid nanoemulsion formulation. Colloids Surf B Biointerfaces 175:143–149

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Wang W, Qu H, Han D et al (2016) Targeted delivery of doxorubicin and vincristine to lymph cancer: evaluation of novel nanostructured lipid carriers in vitro and in vivo. Drug Deliv 23:1374–1378

    Article  CAS  PubMed  Google Scholar 

  • Embleton JK, Pouton CW (1997) Structure and function of gastro-intestinal lipases. Adv Drug Deliv Rev 25:15–32

    Article  CAS  Google Scholar 

  • Fatouros DG, Bergenstahl B, Mullertz A (2007) Morphological observations on a lipid-based drug delivery system during in vitro digestion. Eur J Pharm Sci 31:85–94

    Article  CAS  PubMed  Google Scholar 

  • Godart SJ, Hamilton WF (1963) Lymphatic drainage of the spleen. Am J Physiol 204:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Guzzo TJ, Resnick MJ, Canter DJ et al (2010) Impact of adjuvant chemotherapy on patients with lymph node metastasis at the time of radical cystectomy. Can J Urol 17:5465–5471

    PubMed  Google Scholar 

  • Han H, Li Y, Peng Z et al (2020) A Soluplus/Poloxamer 407-based self-nanoemulsifying drug delivery system for the weakly basic drug carvedilol to improve its bioavailability. Nanomedicine 27:102–199

    Google Scholar 

  • Ji J, Liu M, Meng Y et al (2016) Experimental study of magnetic multi-walled carbon nanotube-doxorubicin conjugate in a lymph node metastatic model of breast cancer. Med Sci Monit 22:2363–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo K, Kim H, Khadka P et al (2019) Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci 15:336–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaminskas LM, Porter CJ (2011) Targeting the lymphatics using dendritic polymers (dendrimers). Adv Drug Deliv Rev 63:890–900

    Article  CAS  PubMed  Google Scholar 

  • Kanwal T, Kawish M, Maharjan R et al (2019) Design and development of permeation enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for ceftriaxone sodium improved oral pharmacokinetics. J Mol Liq 289:111098

    Article  CAS  Google Scholar 

  • Kaur CD, Nahar M, Jain NK (2008) Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Deliv 16:798–805

    CAS  Google Scholar 

  • Kohli K, Chopra S, Dhar D et al (2010) Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today 15:958–965

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Watanabe Y, Hashimoto Y et al (2010) In vivo biological purging for lymph node metastasis of human colorectal cancer by telomerase-specific oncolytic virotherapy. Ann Surg 251:1079–1086

    Article  PubMed  Google Scholar 

  • Kontogiannidou E, Meikopoulos T, Virgiliou C et al (2020) Towards the development of self-Nano-emulsifying drug delivery systems (SNEDDS) containing trimethyl chitosan for the oral delivery of amphotericin B: in vitro assessment and cytocompatibility studies. J Drug Deliv Sci Technol 56:101524

    Article  CAS  Google Scholar 

  • Koppe MJ, Boerman OC, Oyen WJ et al (2006) Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann Surg 243:212–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Kossena GA, Boyd BJ, Porter CJ et al (2003) Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J Pharm Sci 92:634–648

    Article  CAS  PubMed  Google Scholar 

  • Krishnan Y, Mukundan S, Akhil S et al (2018) Enhanced lymphatic uptake of Leflunomide loaded nanolipid carrier via chylomicron formation for the treatment of rheumatoid arthritis. Adv Pharm Bull 8:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Hu R, Wang B et al (2017) Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm Sin B 7:353–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao S, Von Der Weid PY (2015) Lymphatic system: an active pathway for immune protection. Semin Cell Dev Biol 38:83–89

    Article  CAS  PubMed  Google Scholar 

  • Liao LJ, Lo WC, Hsu WL et al (2012) Detection of cervical lymph node metastasis in head and neck cancer patients with clinically N0 neck-a meta-analysis comparing different imaging modalities. BMC Cancer 12:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Chen CH, Lin ZC et al (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Li B, Kang Y et al (2007) Paclitaxel nanoparticle inhibits growth of ovarian cancer xenografts and enhances lymphatic targeting. Cancer Chemother Pharmacol 59:175–181

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Yu X, Jin C et al (2010) LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm 385:150–156

    Article  CAS  PubMed  Google Scholar 

  • Maby-El Hajjami H, Petrova TV (2008) Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol 130:1063–1078

    Article  CAS  PubMed  Google Scholar 

  • Man N, Wang Q, Li H et al (2019) Improved oral bioavailability of myricitrin by liquid self-microemulsifying drug delivery systems. J Drug Deliv Sci Technol 52:597–606

    Article  CAS  Google Scholar 

  • Markl B, Rossle J, Arnholdt HM et al (2012) The clinical significance of lymph node size in colon cancer. Mod Pathol 25:1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Mcintire GL, Bacon ER, Toner JL et al (1998) Pulmonary delivery of nanoparticles of insoluble, iodinated CT X-ray contrast agents to lung draining lymph nodes in dogs. J Pharm Sci 87:1466–1470

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Vuddanda PR, Singh S (2014) Intestinal lymphatic delivery of praziquantel by solid lipid nanoparticles: formulation design, in vitro and in vivo studies. J Nanotechnol 2014:351693

    CAS  Google Scholar 

  • Mohrman DE, Heller LJ (1997) Cardiovascular physiology. McGraw-Hill, New York

    Google Scholar 

  • Myers R, Stella V (1992) Factors affecting the lymphatic transport of penclomedine (NSC-338720), a lipophilic cytotoxic drug: comparison to DDT and hexachlorobenzene. Int J Pharm 80:51–62

    Article  CAS  Google Scholar 

  • Negrini D, Mukenge S, Del Fabbro M et al (1991) Distribution of diaphragmatic lymphatic stomata. J Appl Physiol 70:1544–1549

    Article  CAS  PubMed  Google Scholar 

  • Ollivon M, Eidelman O, Blumenthal R et al (1988) Micelle-vesicle transition of egg phosphatidylcholine and octyl glucoside. Biochemistry 27:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Oussoren C, Storm G (2001) Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 50:143–156

    Article  CAS  PubMed  Google Scholar 

  • Paliwal R, Rai S, Vaidya B et al (2009) Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 5:184–191

    Article  CAS  PubMed  Google Scholar 

  • Pearse G (2006) Normal structure, function and histology of the thymus. Toxicol Pathol 34:504–514

    Article  PubMed  Google Scholar 

  • Pokale R, Bandivadekar M (2016) Self micro-emulsifying drug delivery system for lymphatic uptake of darunavir. J Drug Discov Dev Deliv 3:1–7

    Google Scholar 

  • Porter CJ, Charman SA, Charman WN (1996) Lymphatic transport of halofantrine in the triple-cannulated anesthetized rat model: effect of lipid vehicle dispersion. J Pharm Sci 85:351–356

    Article  CAS  PubMed  Google Scholar 

  • Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6:231–248

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Zhang F, Lu X et al (2013) Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors. J Control Release 171:133–142

    Article  CAS  PubMed  Google Scholar 

  • Rao DA, Forrest ML, Alani AW et al (2010) Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J Pharm Sci 99:2018–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy HL, Sharma RK, Chuttani K et al (2005) Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release 105:185–198

    Article  CAS  Google Scholar 

  • Ryan GM, Kaminskas LM, Bulitta JB et al (2013) PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release 172:128–136

    Article  CAS  PubMed  Google Scholar 

  • Sanjula B, Shah FM, Javed A et al (2009) Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target 17:249–256

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Swami R, Khan W et al (2014) Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv 11:211–229

    Article  CAS  PubMed  Google Scholar 

  • Sitrin MD (2014) Digestion and absorption of dietary triglycerides. In: Leung P (ed) The gastrointestinal system. Springer, Dordrecht, pp 159–178

    Chapter  Google Scholar 

  • Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7:167–169

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson E (1987) Theory and practice of site-specific drug delivery. Adv Drug Deliv Rev 1:87–198

    Article  CAS  Google Scholar 

  • Trevaskis NL, Porter CJ, Charman WN (2006) The lymph lipid precursor pool is a key determinant of intestinal lymphatic drug transport. J Pharmacol Exp Ther 316:881–891

    Article  CAS  PubMed  Google Scholar 

  • Trevaskis NL, Charman WN, Porter CJ (2008) Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev 60:702–716

    Article  CAS  PubMed  Google Scholar 

  • Videira MA, Botelho MF, Santos AC et al (2002) Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target 10:607–613

    Article  CAS  PubMed  Google Scholar 

  • Watson R (ed) (2011) Anatomy and physiology for nurses. Baillière Tindall Elsevier, Edinburgh

    Google Scholar 

  • Yan Z, Wang F, Wen Z et al (2012) LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release 157:118–125

    Article  CAS  PubMed  Google Scholar 

  • Yasir M, Gaur PK, Puri D et al (2018) Solid lipid nanoparticles approach for lymphatic targeting through intraduodenal delivery of quetiapine fumarate. Curr Drug Deliv 15:818–828

    Article  CAS  PubMed  Google Scholar 

  • Ye L, He J, Hu Z et al (2013) Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem Toxicol 52:200–206

    Article  CAS  PubMed  Google Scholar 

  • Yoffey JM, Courtice FC (1970) Lymphatics, lymph and lymphomyeloid complex. Academic, London

    Google Scholar 

  • Zangemeister-Wittke U, Stahel RA (1999) Novel approaches to the treatment of small-cell lung cancer. Cell Mol Life Sci 55:1585–1598

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Jiang H, Wang T et al (2015) Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. J Control Release 200:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hetal P. Thakkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desai, J.L., Thakkar, H.P. (2021). Role of Lipid Nanocarriers in Lymphatic Targeting: Promises and Safety Considerations. In: Shah, N. (eds) Nanocarriers: Drug Delivery System. Springer, Singapore. https://doi.org/10.1007/978-981-33-4497-6_2

Download citation

Publish with us

Policies and ethics