Skip to main content

OD-HyperNet: A Data-Driven Hyper-Network Model for Origin-Destination Matrices Completion Using Partially Observed Data

  • Conference paper
  • First Online:
LISS 2020

Abstract

Estimating the inter-city population flow is critical for modeling the spread of COVID-19. However, for most cities, it is difficult to extract accurate population numbers for inflow and outflow. On the other hand, mobile carriers and Internet companies can estimate the distribution of population flow by tracking their users; but their data only cover part of the travelers. In this paper, we present a data-driven hyper-network model to aggregate these two types of data and complete the inter-city OD matrix. We first propose a cross-layer breadth-first traversal algorithm to estimate the inflow and outflow population of each city, then complete the OD matrix with an optimization model. Our experiments on a real-world dataset prove the accuracy and efficiency of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Brockmann, D. Helbing, The hidden geometry of complex, network-driven contagion phenomena. Science 342(6164), 1337–1342 (2013)

    Article  Google Scholar 

  2. D. Taylor et al., Topological data analysis of contagion maps for examining spreading processes on networks. Nat. Commun. 6(1), 1–11 (2015)

    Google Scholar 

  3. J.S. Jia, X. Lu, Y. Yuan, G. Xu, J. Jia, N.A. Christakis, Population flow drives spatio-temporal distribution of COVID-19 in China. Nature, 1–5 (2020)

    Google Scholar 

  4. D.E. Low, New approach to transportation systems modeling. Traffic Q. 26(3) (1972)

    Google Scholar 

  5. O. Tamin, L. Willumsen, Transport demand model estimation from traffic counts. Transportation 16(1), 3–26 (1989)

    Article  Google Scholar 

  6. M.-H. Wang, S.D. Schrock, N. Vander Broek, T. Mulinazzi, Estimating dynamic origin-destination data and travel demand using cell phone network data. Int. J. Intell. Transp. Syst. Res. 11(2), 76–86 (2013)

    Google Scholar 

  7. L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, L. Damas, Time-evolving OD matrix estimation using high-speed GPS data streams. Expert Syst. Appl. 44, 275–288 (2016)

    Article  Google Scholar 

  8. W.K.V. Chan, C. Hsu, Service scaling on hyper-networks. Serv. Sci. 1(1), 17–31 (2009)

    Article  Google Scholar 

  9. W.K.V. Chan, C. Hsu, How hyper-network analysis helps understand human networks? Serv. Sci. 2(4), 270–280 (2010)

    Article  Google Scholar 

  10. W.K.V. Chan, C. Hsu, Service value networks: humans hypernetwork to cocreate value. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 42(4), 802–813 (2012)

    Article  Google Scholar 

  11. W.K.V. Chan C. Hsu, When human networks collide: the degree distributions of hyper-networks. IIE Tran. 47(9), 929–942 (2015)

    Google Scholar 

  12. R. Borndörfer, M. Grötschel, M.E. Pfetsch, A column-generation approach to line planning in public transport. Transp. Sci. 41(1), 123–132 (2007)

    Article  Google Scholar 

  13. T. Li, A demand estimator based on a nested logit model. Transp. Sci. 51(3), 918–930 (2017)

    Article  Google Scholar 

  14. Z. Cao et al., Incorporating human movement data to improve epidemiological estimates for 2019-nCoV, medRxiv (2020)

    Google Scholar 

  15. E.J. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717 (2009)

    Article  Google Scholar 

  16. H. Zhou, D. Zhang, K. Xie, Accurate traffic matrix completion based on multi-Gaussian models. Comput. Commun. 102, 165–176 (2017)

    Article  Google Scholar 

  17. S. Diamond, S. Boyd, CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(1), 2909–2913 (2016)

    Google Scholar 

  18. A. Agrawal, R. Verschueren, S. Diamond, S. Boyd, A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018)

    Article  Google Scholar 

  19. A. Tavassoli, A. Alsger, M. Hickman, M. Mesbah, How close the models are to the reality? Comparison of transit origin-destination estimates with automatic fare collection data, in Proceedings of the 38th Australasian Transport Research Forum (ATRF), pp. 1–15 (2016)

    Google Scholar 

  20. X. Liu, P. Van Hentenryck, X. Zhao, Optimization Models for Estimating Transit Network Origin-Destination Flows with AVL/APC Data, arXiv preprint arXiv:1911.05777 (2019)

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 71971127) and the Hylink Digital Solutions Co., Ltd. (120500002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Kin (Victor) Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiu, Y., Li, W., Xi, J.Y.(., Chan, W.K.(. (2021). OD-HyperNet: A Data-Driven Hyper-Network Model for Origin-Destination Matrices Completion Using Partially Observed Data. In: Liu, S., Bohács, G., Shi, X., Shang, X., Huang, A. (eds) LISS 2020. Springer, Singapore. https://doi.org/10.1007/978-981-33-4359-7_24

Download citation

Publish with us

Policies and ethics