Skip to main content

Complex and Surprising Dynamics in Gene Regulatory Networks

  • Chapter
  • First Online:
Quantitative Physiology
  • 708 Accesses

Abstract

Interacting genetic networks are governed by mechanisms describing nonlinear dynamics of such elements. As a result, several surprising effects can appear. Here we show how clustering and oscillation death can appear in a system of coupled repressilators, how cellular decision making can depend on speed in noisy genetic networks, and how one can implement genetic intelligence.

The human genome is a script, waiting for the amino actors, the protein players to strut and fret their hour. —Johnny Rich

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Reprinted whole article with permission.

  2. 2.

    Reprinted whole article with permission from [105].

  3. 3.

    Reprinted whole article with permission from [11]. Copyright 2014 by the American Physical Society.

  4. 4.

    Reprinted whole article with permission from [12].

References

  1. Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EPS, Landgraf D, Phillips I, Silver PA. Rational design of memory in eukaryotic cells. Genes Dev. 2007; 21 18:2271–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alberts B. Molecular biology of the cell. New York: Garland Science; 2008.

    Google Scholar 

  3. Anderson JC, Voigt CA, Arkin AP. Environmental signal integration by a modular and gate. Mol Syst Biol. 2007; 3 1:133.

    Google Scholar 

  4. Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G, Richardson SM, Dymond JS, Kuang Z, Scheifele LZ, Cooper EM, et al. Total synthesis of a functional designer eukaryotic chromosome. Science 2014; 344 6179:55–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Atkinson MR, Savageau MA, Myers JT, Ninfa AJ. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 2003; 113 5:597–607.

    Article  CAS  PubMed  Google Scholar 

  6. Balázsi G, Cornell-Bell A, Neiman AB, Moss F. Synchronization of hyperexcitable systems with phase-repulsive coupling. Phys. Rev. E 2001; 64 4:041912.

    Google Scholar 

  7. Balázsi G, Alexander van O, Collins JJ. Cellular decision making and biological noise: from microbes to mammals. Cell 2011; 144 6:910–925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93 6:929–937.

    Article  CAS  PubMed  Google Scholar 

  9. Baştanlar Y, Özuysal M. Introduction to machine learning. In: Yousef M, Allmer J, editors. miRNomics: MicroRNA biology and computational analysis. Methods in molecular biology (methods and protocols), vol 1107. Totowa: Humana Press; 2014

    Google Scholar 

  10. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R. A synthetic multicellular system for programmed pattern formation. Nature 2005; 434 7037:1130.

    Google Scholar 

  11. Bates R, Blyuss O, Zaikin A. Stochastic resonance in an intracellular genetic perceptron. Phys Rev E 2014; 89:032716. https://doi.org/10.1103/PhysRevE.89.032716

    Article  CAS  Google Scholar 

  12. Bates R, Blyuss O, Alsaedi A, and Zaikin A. Effect of noise in intelligent cellular decision making. PloS One 2015; 10 5:e0125079.

    Google Scholar 

  13. Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. J Phys A 1981; 14:L453.

    Article  Google Scholar 

  14. Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. Amplifying genetic logic gates. Science 2013; 340 6132:599–603.

    Article  CAS  PubMed  Google Scholar 

  15. Borg Y, Ullner E, Alagha A, Alsaedi A, Nesbeth D, Zaikin A. Complex and unexpected dynamics in simple genetic regulatory networks. Int J Mod Phys B 2014; 28 14:1430006.

    Google Scholar 

  16. Bratsun D, Volfson D, Tsimring L, Hasty J. Delay-induced stochastic oscillations in gene regulation. Proc Natl Acad Sci. 2005; 102 41:14593–14598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bray D. Protein molecules as computational elements in living cells. Nature 1995; 376 6538:307–312.

    Article  CAS  PubMed  Google Scholar 

  18. Bray D, Lay S. Computer simulated evolution of a network of cell-signaling molecules. Biophys J. 1994; 66 4:972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cambras T, Weller JR, Anglès-Pujoràs M, Lee ML, Christopher A, Díez-Noguera A, Krueger JM, Horacio O. Circadian desynchronization of core body temperature and sleep stages in the rat. Proc Natl Acad Sci. 2007; 104 18:7634–7639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carr AJF, Whitmore D. Imaging of single light-responsive clock cells reveals fluctuating free-running periods. Nat Cell Biol. 2005; 7 3:319.

    Google Scholar 

  21. Carrillo O, Santos MA, García-Ojalvo J, Sancho JM. Spatial coherence resonance near pattern-forming instabilities. Europhys. Lett. 2004; 65 4:452.

    Google Scholar 

  22. Cichocka D, Claxton J, Economidis I, Hogel J, Venturi P, Aguilar A. European Union research and innovation perspectives on biotechnology. J. Biotechnol. 2011; 156 4:382–391.

    Google Scholar 

  23. Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B. Dynamic filopodia transmit intermittent delta-notch signaling to drive pattern refinement during lateral inhibition. Dev. Cell 2010; 19 1:78–89.

    Google Scholar 

  24. Crowley MF, Epstein IR. Experimental and theoretical studies of a coupled chemical oscillator: phase death, multistability and in-phase and out-of-phase entrainment. J Phys Chem. 1989; 93 6:2496–2502.

    Article  CAS  Google Scholar 

  25. Danino T, Mondragón-Palomino O, Tsimring L, Hasty J. A synchronized quorum of genetic clocks. Nature 2010; 463 7279:326.

    Google Scholar 

  26. Didovyk A, Kanakov OI, Ivanchenko MV, Hasty J, Huerta R, Tsimring L. Distributed classifier based on genetically engineered bacterial cell cultures. ACS Synth Biol. 2015; 4 1:72–82.

    Article  CAS  PubMed  Google Scholar 

  27. Diez-Noguera A. A functional model of the circadian system based on the degree of intercommunication in a complex system. Am J Physiol-Regul Integr Comp Physiol. 1994; 267 4:R1118–R1135.

    Article  CAS  Google Scholar 

  28. Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature 2010; 467 7312:167.

    Google Scholar 

  29. Elowitz MB. Stochastic gene expression in a single cell. Science 2002; 297 5584:1183–1186.

    Article  CAS  PubMed  Google Scholar 

  30. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature 2000; 403 6767:335.

    Google Scholar 

  31. Fernando CT, Liekens AML, Bingle LEH, Beck C, Lenser T, Stekel DJ, Rowe JE. Molecular circuits for associative learning in single-celled organisms. J R Soc Interface 2008; 6 34:463–469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fraser A, Tiwari J. Genetical feedback-repression: Ii. cyclic genetic systems. J Theor Biol. 1974; 47 2:397–412.

    Google Scholar 

  33. Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ. Synthetic gene networks that count. Science 2009; 324 5931:1199–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fung E, Wong WW, Suen JK, Bulter T, Lee S, Liao JC. A synthetic gene–metabolic oscillator. Nature 2005; 435 7038:118.

    Google Scholar 

  35. Gammaitoni L, Hänggi P, Jung P, Marchesoni F. Stochastic resonance. Rev Mod Phys. 1998; 70 1:223.

    Google Scholar 

  36. Gandhi N, Ashkenasy G, Tannenbaum E. Associative learning in biochemical networks. J Theor Biol. 2007; 249 1:58–66.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Ojalvo J, Elowitz MB, Strogatz SH. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci. 2004; 101 30:10955–10960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature 2000; 403:339–342.

    Article  CAS  PubMed  Google Scholar 

  39. Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature 2015; 521 7553:452.

    Google Scholar 

  40. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009; 6:343–345.

    Article  CAS  PubMed  Google Scholar 

  41. Gillespie DT. The chemical Langevin equation. J Chem Phys. 2000; 113 1:297.

    Google Scholar 

  42. Ginsburg S, Jablonka E. The evolution of associative learning: a factor in the Cambrian explosion. J Theor Biol. 2010; 266 1:11–20.

    Article  PubMed  Google Scholar 

  43. Giuraniuc CV, MacPherson M, Saka Y. Gateway vectors for efficient artificial gene assembly in vitro and expression in yeast Saccharomyces cerevisiae. PLoS One 2013; 8 5:e64419.

    Google Scholar 

  44. Glass L. Mackey MC. From clocks to chaos: the rhythms of life. Princeton, Princeton University; 1988.

    Book  Google Scholar 

  45. Golomb D, Hansel D, Shraiman B, Sompolinsky H. Clustering in globally coupled phase oscillators. Phys Rev A 1992; 45 6: 3516.

    Google Scholar 

  46. Goñi-Moreno A, Amos M. A reconfigurable NAND/NOR genetic logic gate. BMC Syst Biol. 2012; 6 1:126.

    Google Scholar 

  47. Gonze D, Halloy J, Goldbeter A. Robustness of circadian rhythms with respect to molecular noise. Proc Natl Acad Sci. 2002; 99 2:673–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H. Spontaneous synchronization of coupled circadian oscillators. Biophys J. 2005; 89 1:120–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goodwin BC. Temporal organization in cells; a dynamic theory of cellular control processes. Academic Press, Waltham; 1963.

    Book  Google Scholar 

  50. Goodwin BC. Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul. 1965; 3:425–437.

    Article  CAS  PubMed  Google Scholar 

  51. Granados-Fuentes D, Prolo LM, Abraham U, and Herzog ED. The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb. J Neurosci. 2004; 24 3: 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gurdon JB, Lemaire P, Kato K. Community effects and related phenomena in development. Cell 1993; 75 5:831–834.

    Article  CAS  PubMed  Google Scholar 

  53. Haken H. Synergetics. Phys Bull. 1977; 28 9:412.

    Google Scholar 

  54. Hänggi P. Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 2002; 3 3:285–290.

    Article  PubMed  Google Scholar 

  55. Hastings MH, Herzog ED. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms 2004; 19 5:400–413.

    Article  CAS  PubMed  Google Scholar 

  56. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003; 4 8:649.

    Google Scholar 

  57. Herzog ED, Schwartz WJ. Invited review: a neural clockwork for encoding circadian time. J Appl Physiol. 2002; 92 1:401–408.

    Article  CAS  PubMed  Google Scholar 

  58. Hjelmfelt A, Ross J. Implementation of logic functions and computations by chemical kinetics. Physica D Nonlinear Phenom 1995; 84 1–2:180–19.

    Article  CAS  Google Scholar 

  59. Hjelmfelt A, Weinberger ED, Ross J. Chemical implementation of neural networks and turing machines. Proc Natl Acad Sci. 1991; 88 24:10983–10987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hogenesch JB, Ueda HR. Understanding systems-level properties: timely stories from the study of clocks. Nat Rev Genet. 2011; 12 6:407.

    Google Scholar 

  61. Horsthemke W, Lefever R. Noise-induced transitions: theory and applications in physics, chemistry, and biology. Springer Series in Synergetics. Berlin, Springer; 2006.

    Google Scholar 

  62. Hutchison CA, Chuang R, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science 2016; 351 6280:aad6253.

    Google Scholar 

  63. Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K. Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci. 2007; 104 18:7664–7669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones B, Stekel DJ, Rowe JE, Fernando CT. Is there a liquid state machine in the bacterium Escherichia coli? In: Proceedings of IEEE symposium on artificial life; 2007. pp. 187–191.

    Google Scholar 

  65. Kanakov O, Kotelnikov R, Alsaedi A, Tsimring L, Huerta R, Zaikin A. Multi-input distributed classifiers for synthetic genetic circuits. PLoS One 2015; 10:e0125144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kanakov O, Laptyeva T, Tsimring L, Ivanchenko M. Spatiotemporal dynamics of distributed synthetic genetic circuits. Physica D Nonlinear Phenom. 2016; 318:116–123.

    Article  Google Scholar 

  67. Kaneko K. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. Physica D Nonlinear Phenom. 1990; 41 2:137–172.

    Article  Google Scholar 

  68. Kaneko K, Yomo T. Cell division, differentiation and dynamic clustering. Physica D Nonlinear Phenom. 1994; 75:89–102.

    Article  Google Scholar 

  69. Kashiwagi A, Urabe I, Kaneko K, Yomo T. Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PloS One 2006; 1 1:e49.

    Google Scholar 

  70. Kim J, Winfree E. Synthetic in vitro transcriptional oscillators. Mol Syst Biol. 2011; 7 1:465.

    Google Scholar 

  71. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TDL, Vitaterna MH, Kornhauser JM, Lowrey PL, et al. Positional cloning of the mouse circadian clock gene. Cell 1997; 89 4:641–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kiss IZ, Hudson JL. Chaotic cluster itinerancy and hierarchical cluster trees in electrochemical experiments. Chaos 2003; 13 3:999–1009.

    Article  CAS  PubMed  Google Scholar 

  73. Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE, Ralph MR, Kay SA, Forger DB, Takahashi JS. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biology 2010; 8 10:e1000513.

    Google Scholar 

  74. Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ. Programmable cells: interfacing natural and engineered gene networks. Proc Natl Acad Sci. 2004; 101 22:8414–8419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol. 2014; 3 2:97–106.

    Article  PubMed  CAS  Google Scholar 

  76. Koseska A, Volkov E, Zaikin A, Kurths J. Inherent multistability in arrays of autoinducer coupled genetic oscillators. Phys Rev E 2007; 75 3:031916.

    Google Scholar 

  77. Koseska A, Volkov E, Kurths J. Parameter mismatches and oscillation death in coupled oscillators. Chaos 2010; 20 2:023132.

    Google Scholar 

  78. Kuznetsov AS, Kurths J. Stable heteroclinic cycles for ensembles of chaotic oscillators. Phys Rev E 2002; 66 2:026201.

    Google Scholar 

  79. Laje R, Mindlin GB. Diversity within a birdsong. Phys Rev Lett. 2002; 89 28:288102.

    Google Scholar 

  80. Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, et al. Synthetic biology: engineering Escherichia coli to see light. Nature 2005; 438 7067:441.

    Google Scholar 

  81. Lewis J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol. 2003; 13 16:1398–1408.

    Article  CAS  PubMed  Google Scholar 

  82. Lindner B, Garcıa-Ojalvo J, Neiman A, Schimansky-Geier L. Effects of noise in excitable systems. Phys Rep. 2004; 392 6:321–424.

    Article  Google Scholar 

  83. Liu T, Borjigin J. Reentrainment of the circadian pacemaker through three distinct stages. J Biol Rhythms 2005; 20 5:441–450.

    Article  CAS  PubMed  Google Scholar 

  84. Lu TK, Khalil AS, Collins JJ. Next-generation synthetic gene networks. Nat Biotechnol. 2009; 27 12:1139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lutz R, Bujard H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 1997; 25 6:1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maheshri N, O’Shea EK. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu Rev Biophys Biomolecular Structure 2007; 36: 413–434.

    Article  CAS  Google Scholar 

  87. Manrubia SC, Mikhailov AS. Mutual synchronization and clustering in randomly coupled chaotic dynamical networks. Phys Rev E 1999; 60 2:1579.

    Google Scholar 

  88. Mariño IP, Ullner E, Zaikin A. Parameter estimation methods for chaotic intercellular networks. PloS One 2013; 8 11:e79892.

    Google Scholar 

  89. Maywood ES, Reddy AB, Wong GKY, O’Neill JS, O’Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr. Biol. 2006; 16 6:599–605.

    Google Scholar 

  90. McAdams HH, Arkin A. It’s a noisy business! genetic regulation at the nanomolar scale. Trends Genet. 1999; 15 2:65–69.

    Article  CAS  PubMed  Google Scholar 

  91. McClung CR. Plant circadian rhythms. Plant Cell 2006; 18 4:792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McMillen D, Kopell N, Hasty J, Collins JJ. Synchronizing genetic relaxation oscillators by intercell signaling. Proc Natl Acad Sci. 2002; 99 2:679–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meinhardt H. Models of biological pattern formation. London: Academic Press; 1982.

    Google Scholar 

  94. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001; 55:165–199.

    Article  CAS  PubMed  Google Scholar 

  95. Miyakawa K, Yamada K. Synchronization and clustering in globally coupled salt-water oscillators. Physica D Nonlinear Phenom. 2001; 151 2–4:217–227.

    Article  Google Scholar 

  96. Mori T, Kai S. Noise-induced entrainment and stochastic resonance in human brain waves. Phys Rev Lett. 2002; 88:218101.

    Article  PubMed  CAS  Google Scholar 

  97. Munsky B, Neuert G, Van Oudenaarden A. Using gene expression noise to understand gene regulation. Science 2012; 336 6078:183–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Murray-Zmijewski F, Slee EA, Lu X. A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol. 2008; 9 9:702.

    Google Scholar 

  99. Nakagaki T, Yamada H, Tóth A. Intelligence: maze-solving by an amoeboid organism. Nature 2000; 407 6803:470.

    Google Scholar 

  100. Neiman A, Saparin PI, Stone L. Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems. Phys Rev E 1997; 56 1:270.

    Google Scholar 

  101. Nené NR, Zaikin A. Interplay between path and speed in decision making by high-dimensional stochastic gene regulatory networks. PLoS One 2012; 7 7:e40085.

    Google Scholar 

  102. Nené NR, Zaikin A. Decision making in noisy bistable systems with time-dependent asymmetry. Phys Rev E 2013; 87 1:012715.

    Google Scholar 

  103. Nene NR, Garca-Ojalvo J, Zaikin A. Speed-dependent cellular decision making in nonequilibrium genetic circuits. PloS One 2012; 7 3:e32779.

    Google Scholar 

  104. Nené NR, Rivington J, Zaikin A. Sensitivity of asymmetric rate-dependent critical systems to initial conditions: Insights into cellular decision making. Phys Rev E 2018; 98 2:022317.

    Google Scholar 

  105. Nesbeth DN, Zaikin A, Saka Y, Romano C, Giuraniuc C, Kanakov O, Laptyeva T. Synthetic biology routes to bio-artificial intelligence. Essays Biochem. 2016; 60:381–391

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nicolis G, Prigogine I. Self-organization in nonequilibrium systems. New York, Wiley; 1977.

    Google Scholar 

  107. Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 2009; 6 12:917.

    Google Scholar 

  108. Noskov VN, Karas BJ, Young L, Chuang R, Gibson DG, Lin Y, Stam J, Yonemoto IT, Suzuki Y, Andrews-Pfannkoch C, et al. Assembly of large, high G+G bacterial DNA fragments in yeast. ACS Synth Biol. 2012; 1 7:267–273.

    Article  CAS  PubMed  Google Scholar 

  109. Ohta H, Yamazaki S, McMahon DG. Constant light desynchronizes mammalian clock neurons. Nat Neurosci. 2005; 8 3:267.

    Google Scholar 

  110. Okuda K. Variety and generality of clustering in globally coupled oscillators. Physica D Nonlinear Phenom. 63 3–4:424–436.

    Google Scholar 

  111. Osipov GV, Zhou C, Kurths J. Synchronization in oscillatory networks. Berlin: Springer; 2007.

    Book  Google Scholar 

  112. Pais-Vieira M, Chiuffa G, Lebedev M, Yadav A, Nicolelis MA. Building an organic computing device with multiple interconnected brains. Sci Rep. 2015; 5:11869.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Partridge L, Barrie B, Fowler K, French V. Evolution and development of body size and cell size in drosophila melanogaster in response to temperature. Evolution 1994; 48 4:1269–1276.

    Article  PubMed  Google Scholar 

  114. Paulsson J, Ehrenberg M. Noise in a minimal regulatory network: plasmid copy number control. Q Rev Biophys. 2001; 34 1:1–59.

    Article  CAS  PubMed  Google Scholar 

  115. Pavlov IP. Conditional reflexes: an investigation of the physiological activity of the cerebral cortex. Nature 1928; 121:662–664.

    Article  Google Scholar 

  116. Peltier J, Schaffer DV. Systems biology approaches to understanding stem cell fate choice. IET Syst Biol. 2010; 4 1:1–11.

    Article  CAS  PubMed  Google Scholar 

  117. Peplow M. Synthetic biology’s first malaria drug meets market resistance. Nature 2016; 530 7591:389.

    Google Scholar 

  118. Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Phys Rev Lett. 1997; 78 5:775.

    Google Scholar 

  119. Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol. 2012; 8 1:574.

    Google Scholar 

  120. Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. The Lancet 2003; 362 9390:1123–1124.

    Article  Google Scholar 

  121. Purcell O, Savery NJ, Grierson CS, Di Bernardo M. A comparative analysis of synthetic genetic oscillators. J R Soc Interface 2010; 7 52:1503–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Qian L, Winfree E, Bruck J. Neural network computation with DNA strand displacement cascades. Nature 2011; 475 7356:368–372.

    Article  CAS  PubMed  Google Scholar 

  123. Quintero JE, Kuhlman SJ, McMahon DG. The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci. 2003; 23 22:8070–8076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Raser JM, O’Shea EK. Noise in gene expression: origins, consequences, and control. Science 2005; 309 5743:2010–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Reimann P. Brownian motors: noisy transport far from equilibrium. Phys Rep. 2002; 361 2–4:57–265.

    Article  CAS  Google Scholar 

  126. Rosen-Zvi M. On-line learning in the Ising perceptron. J Phys A Math Gen. 2000; 33 41:7277.

    Google Scholar 

  127. Russell DF, Wilkens LA, Moss F. Use of behavioural stochastic resonance by paddle fish for feeding. Nature 1999; 402 6759:291–294.

    Article  CAS  PubMed  Google Scholar 

  128. Russell S, Hauert S, Altman R, Veloso M. Ethics of artificial intelligence. Nature 2015; 521 7553:415–416.

    Article  PubMed  CAS  Google Scholar 

  129. Sadooghi-Alvandi SM, Nematollahi AR, Habibi R. On the distribution of the sum of independent uniform random variables. Stat Pap. 2007; 50 1:171–175.

    Article  Google Scholar 

  130. Sagués F, Sancho J, García-Ojalvo J. Spatiotemporal order out of noise. Rev Mod Phys. 2007; 79 3:829.

    Google Scholar 

  131. Saigusa T, Tero A, Nakagaki T, Kuramoto Y. Amoebae anticipate periodic events. Phys Rev Lett. 2008; 100 1:018101.

    Google Scholar 

  132. Saka Y, Lhoussaine C, Kuttler C, Ullner E, Thiel M. Theoretical basis of the community effect in development. BMC Syst Biol. 2011; 5 1:54.

    Google Scholar 

  133. Samborska V, Gordleeva S, Ullner E, Lebedeva A, Kazantzev V, Ivancheno M, Zaikin A. Mammalian brain as networks of networks. Opera Medica Physiol. 2016; 1:23–38.

    Google Scholar 

  134. Sanchez A, Golding I. Genetic determinants and cellular constraints in noisy gene expression. Science 2013; 342 6163:1188–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Simonotto E, Riani M, Seife C, Roberts M, Twitty J, Moss F. Visual perception of stochastic resonance. Phys Rev Lett. 1997; 78:1186.

    Article  CAS  Google Scholar 

  136. Siuti P, Yazbek J, Lu TK. Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol. 2013; 31 5:448.

    Google Scholar 

  137. Slipantschuk J, Ullner E, Baptista MS, Zeineddine M, Thiel M. Abundance of stable periodic behavior in a red grouse population model with delay: a consequence of homoclinicity. Chaos 2010; 20 4:045117.

    Google Scholar 

  138. Stormo GD, Schneider TD, Gold L, Ehrenfeucht A. Use of the ‘perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res. 1982; 10 9:2997–3011.

    Google Scholar 

  139. Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring L, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature 2008; 456 7221:516.

    Google Scholar 

  140. Suzuki N, Furusawa C, Kaneko K. Oscillatory protein expression dynamics endows stem cells with robust differentiation potential. PloS One 2011; 6 11:e27232.

    Google Scholar 

  141. Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci. 2002; 99 20:12795–12800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Swain PS, Longtin A. Noise in genetic and neural networks. Chaos 2006; 16 2:026101.

    Google Scholar 

  143. Tabor JJ, Levskaya A, Voigt CA. Multichromatic control of gene expression in Escherichia coli. J Mol Biol. 2011; 405 2:315–324.

    Article  CAS  PubMed  Google Scholar 

  144. Tamsir A, Tabor JJ, Voigt CA. Robust multicellular computing using genetically encoded nor gates and chemical ‘wires’. Nature 2011; 469 7329:212.

    Google Scholar 

  145. Tero A, Takagi S, Saigusa T, Ito K, Bebbe DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T. Rules for biologically inspired adaptive network design. Science 2010; 327 5964:439–442.

    Article  CAS  PubMed  Google Scholar 

  146. Terrell JL, Wu H, Tsao C, Barber NB, Servinsky MD, Payne GF, Bentley WE. Nano-guided cell networks as conveyors of molecular communication. Nat Commun. 2015; 6:8500.

    Article  CAS  PubMed  Google Scholar 

  147. Thomas P, Straube AV, Timmer J, Fleck C, Grima R. Signatures of nonlinearity in single cell noise-induced oscillations. J Theor Biol. 2013; 335:222–234.

    Article  PubMed  Google Scholar 

  148. Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic mammalian oscillator. Nature 2009; 457 7227:309.

    Google Scholar 

  149. Tiwari J, Fraser A, Beckman R. Genetical feedback repression i. single locus models. J Theor Biol. 1974; 45 2:311–326.

    Google Scholar 

  150. Ullner E, Buceta J, Díez-Noguera A, García-Ojalvo J. Noise-induced coherence in multicellular circadian clocks. Biophys J. 2009; 96 9:3573–3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ullner E, Zaikin A, Volkov EI, García-Ojalvo J. Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication. Phys Rev Lett. 2007; 99 14:148103.

    Google Scholar 

  152. Usher M, Feingold M. Stochastic resonance in the speed of memory retrieval. Biol Cybern. 2000; 83 6:L011–L016.

    Article  Google Scholar 

  153. Volkov EI, Stolyarov MN. Birhythmicity in a system of two coupled identical oscillators. Physics Letters A 1991; 159 1–2:61–66.

    Article  Google Scholar 

  154. Volkov EI, Stolyarov MN. Temporal variability in a system of coupled mitotic timers. Biol Cybern. 1994; 71 5:451–459.

    Article  CAS  PubMed  Google Scholar 

  155. Volkov EI, Ullner E, Kurths J. Stochastic multiresonance in the coupled relaxation oscillators. Chaos 2005; 15 2:023105.

    Google Scholar 

  156. Wang W, Kiss IZ, Hudson JL. Experiments on arrays of globally coupled chaotic electrochemical oscillators: Synchronization and clustering. Chaos 2000; 10 1:248–256.

    Article  CAS  PubMed  Google Scholar 

  157. Wang W, Kiss IZ, Hudson JL. Clustering of arrays of chaotic chemical oscillators by feedback and forcing. Phys Rev Lett. 2001; 86 21:4954.

    Google Scholar 

  158. Weiss JN. The hill equation revisited: uses and misuses. FASEB J. 1997; 11 11:835–41.

    Article  CAS  PubMed  Google Scholar 

  159. Westermark PO, Welsh DK, Okamura H, Herzel H. Quantification of circadian rhythms in single cells. PLoS Comput Biol. 2009; 5 11:e1000580.

    Google Scholar 

  160. Wiesenfeld K. Noisy precursors of nonlinear instabilities. J Stat Phys. 1985; 38 5–6):1071–1097.

    Google Scholar 

  161. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 2003; 302 5649:1408–1412.

    Article  CAS  PubMed  Google Scholar 

  162. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288 5466:682–685.

    Article  CAS  PubMed  Google Scholar 

  163. Ye H, Baba MDI, Peng R, Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 2011; 332 6037:1565–1568.

    Article  CAS  PubMed  Google Scholar 

  164. You L, Cox RS, Weiss R, Arnold FH. Programmed population control by cell–cell communication and regulated killing. Nature 2004; 428 6985:868.

    Google Scholar 

  165. Zopf CJ, Quinn K, Zeidman J, Maheshri N. Cell-cycle dependence of transcription dominates noise in gene expression. PLoS Comput Biol. 2013; 9 7:e1003161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Huazhong University of Science and Technology Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, S., Zaikin, A. (2020). Complex and Surprising Dynamics in Gene Regulatory Networks. In: Quantitative Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-33-4033-6_12

Download citation

Publish with us

Policies and ethics