Skip to main content

Organ Chips and Visualization of Biological Systems

  • Chapter
  • First Online:
Visualized Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1199))

Abstract

Organ-on-a-chip (OOC) is an emerging frontier cross-cutting science and technology developed in the past 10 years. It was first proposed by the Wyss Institute for Biologically Inspired Engineering of Harvard Medical School. It consists of a transparent flexible polymer the size of a computer memory stick, with hollow microfluidic channels lined with living human cells. Researchers used bionics methods to simulate the microenvironment of human cells on microfluidic chips, so as to realize the basic physiological functions of corresponding tissues and organs in vitro. Transparent chip materials can perform real-time visualization and high-resolution analysis of various human life processes in a way that is impossible in animal models, so as to better reproduce the microenvironment of human tissue and simulate biological systems in vitro to observe drug metabolism and other life processes. It provides innovative research systems and system solutions for in vitro bionics of biological systems. It also has gradually become a new tool for disease mechanism research and new drug development. In this chapter, we will take the current research mature single-organ-on-a-chip and multi-organ human-on-a-chip as examples; give an overview of the research background and underlying technologies in this field, especially the application of in vitro bionic models in visualized medicine; and look forward to the foreseeable future development prospects after the integration of organ-on-chip and organoid technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

μ-TAS:

Miniaturized total analysis system

3D:

Three-dimensional

ADMET:

Absorption, distribution, metabolism, excretion, toxicity

AST:

Antimicrobial susceptibility test

BBB:

Blood-brain barrier

BTHS:

Barth syndrome

DARPA:

Defense Advanced Research Projects Agency

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

ESC:

Embryonic stem cell

FDA:

Food and Drug Administration

GelMA:

Methacrylic acid gel

HUVEC:

Human umbilical vein endothelial

IL-2:

Interleukin-2

LC-MS:

Liquid chromatography-mass spectrometry

NCAM-1:

Neural cell adhesion molecule

NIH:

National Institutes of Health

OOC:

Organ-on-a-chip

PBPK:

Physiologically based pharmacokinetic

PCL:

Polycaprolactone

PCR:

Polymerase chain reaction

PD:

Pharmacodynamic

PDMS:

Polydimethylsiloxane

PLA:

Polylactic acid

PLGA:

Polylacticcoglycollic acid

PMMA:

Polymethyl methacrylate

PNIPAAm-PEG:

Poly-N-isopropylacrylamide-polyethylene glycol

References

  1. Seok J, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12. https://doi.org/10.1073/pnas.1222878110.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Henderson VC, Kimmelman J, Fergusson D, Grimshaw JM, Hackam DG. Threats to validity in the design and conduct of preclinical efficacy studies: a systematic review of guidelines for in vivo animal experiments. PLoS Med. 2013;10:e1001489. https://doi.org/10.1371/journal.pmed.1001489.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–54. https://doi.org/10.1016/j.tcb.2011.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huh D, et al. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–8. https://doi.org/10.1126/science.1188302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov. 2021;20:345–61. https://doi.org/10.1038/s41573-020-0079-3.

    Article  CAS  PubMed  Google Scholar 

  6. Azizgolshani H, et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip. 2021;21:1454–74. https://doi.org/10.1039/d1lc00067e.

    Article  CAS  PubMed  Google Scholar 

  7. Vulto P, Joore J. Adoption of organ-on-chip platforms by the pharmaceutical industry. Nat Rev Drug Discov. 2021;20:961–2. https://doi.org/10.1038/s41573-021-00323-0.

    Article  CAS  PubMed  Google Scholar 

  8. Mancini V, et al. Metabolomic analysis evidences that uterine epithelial cells enhance blastocyst development in a microfluidic device. Cell. 2021;10 https://doi.org/10.3390/cells10051194.

  9. Virumbrales-Munoz M, et al. Microfluidic lumen-based systems for advancing tubular organ modeling. Chem Soc Rev. 2020;49:6402–42. https://doi.org/10.1039/d0cs00705f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herland A, et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng. 2020;4:421–36. https://doi.org/10.1038/s41551-019-0498-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10:187–217. https://doi.org/10.1088/0143-0815/10/3/001.

    Article  CAS  PubMed  Google Scholar 

  12. Manz A, et al. Planar chips Technology for Miniaturization and Integration of separation techniques into monitoring systems—capillary electrophoresis on a chip. J Chromatogr. 1992;593:253–8. https://doi.org/10.1016/0021-9673(92)80293-4.

    Article  CAS  Google Scholar 

  13. Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science. 2002;298:580–4. https://doi.org/10.1126/science.1076996.

    Article  CAS  PubMed  Google Scholar 

  14. Kartalov EP, Scherer A, Quake SR, Taylor CR, Anderson WF. Experimentally validated quantitative linear model for the device physics of elastomeric microfluidic valves. J Appl Phys. 2007;101, Artn 064505 https://doi.org/10.1063/1.2511688.

  15. Thorsen TA. Microfluidic tools for high-throughput screening. BioTechniques. 2004;36:197–9. https://doi.org/10.2144/04362te01.

    Article  CAS  PubMed  Google Scholar 

  16. Wu MH, Whitesides GM. Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography. Appl Phys Lett. 2001;78:2273–5. https://doi.org/10.1063/1.1351525.

    Article  CAS  Google Scholar 

  17. Chabinyc ML, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem. 2001;73:4491–8. https://doi.org/10.1021/ac010423z.

    Article  CAS  PubMed  Google Scholar 

  18. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73. https://doi.org/10.1038/nature05058.

    Article  CAS  PubMed  Google Scholar 

  19. Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos. 2003;31:1035–42. https://doi.org/10.1124/dmd.31.8.1035.

    Article  CAS  PubMed  Google Scholar 

  20. Hamilton G. Multicellular spheroids as an in vitro tumor model. Cancer Lett. 1998;131:29–34. https://doi.org/10.1016/S0304-3835(98)00198-0.

    Article  CAS  PubMed  Google Scholar 

  21. Ong SM, et al. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials. 2010;31:1180–90. https://doi.org/10.1016/j.biomaterials.2009.10.049.

    Article  CAS  PubMed  Google Scholar 

  22. Dubessy C, Merlin JL, Marchal C, Guillemin F. Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol. 2000;36:179–92. https://doi.org/10.1016/S1040-8428(00)00085-8.

    Article  CAS  PubMed  Google Scholar 

  23. Kunz-Schughart LA. Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int. 1999;23:157–61. https://doi.org/10.1006/cbir.1999.0384.

    Article  CAS  PubMed  Google Scholar 

  24. Mueller-Klieser W. Multicellular spheroids. J Cancer Res Clin. 1987;113:101–22.

    Article  CAS  Google Scholar 

  25. Yuhas JM, Li AP, Martinez AO, Ladman AJ. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 1977;37:3639–43.

    CAS  PubMed  Google Scholar 

  26. Tung Y-C, et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011;136:473–8.

    Article  CAS  PubMed  Google Scholar 

  27. Karp JM, et al. Controlling size, shape and homogeneity of embryoid bodies using poly (ethylene glycol) microwells. Lab Chip. 2007;7:786–94.

    Article  CAS  PubMed  Google Scholar 

  28. Hardelauf H, et al. Microarrays for the scalable production of metabolically relevant tumour spheroids: a tool for modulating chemosensitivity traits. Lab Chip. 2011;11:419–28.

    Article  CAS  PubMed  Google Scholar 

  29. Kinney MA, Saeed R, McDevitt TC. Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size. Integr Biol-Uk. 2012;4:641–50.

    Article  CAS  Google Scholar 

  30. Torisawa Y-S, et al. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials. 2007;28:559–66.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang YS, Choi S-W, Xia Y. Inverse opal scaffolds for applications in regenerative medicine. Soft Matter. 2013;9:9747–54.

    Article  CAS  Google Scholar 

  32. Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials. 2009;30:6076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kievit FM, et al. Chitosan–alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials. 2010;31:5903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9:90–3.

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater. 2012;11:734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fischbach C, et al. Engineering tumors with 3D scaffolds. Nat Methods. 2007;4:855–60.

    Article  CAS  PubMed  Google Scholar 

  37. Lei Y, Jeong D, Xiao J, Schaffer DV. Developing defined and scalable 3D culture systems for culturing human pluripotent stem cells at high densities. Cell Mol Bioeng. 2014;7:172–83. https://doi.org/10.1007/s12195-014-0333-z.

    Article  CAS  PubMed  Google Scholar 

  38. Lee BI, et al. Quantification and application of a liquid chromatography-tandem mass spectrometric method for the determination of WKYMVm peptide in rat using solid-phase extraction. Biomed Chromatogr. 2018;32 https://doi.org/10.1002/bmc.4107.

  39. Aydemir O, Ozcan B, Yucel H, Bas AY, Demirel N. Asymmetric dimethylarginine and L-arginine levels in neonatal sepsis and septic shock. J Matern Fetal Neonatal Med. 2015;28:977–82. https://doi.org/10.3109/14767058.2014.939950.

    Article  CAS  PubMed  Google Scholar 

  40. Wu J, et al. Lab-on-a-Chip platforms for detection of cardiovascular disease and cancer biomarkers. Sensors (Basel). 2017;17 https://doi.org/10.3390/s17122934.

  41. Perez-Ruiz E, et al. Digital ELISA for the quantification of attomolar concentrations of Alzheimer's disease biomarker protein Tau in biological samples. Anal Chim Acta. 2018;1015:74–81. https://doi.org/10.1016/j.aca.2018.02.011.

    Article  CAS  PubMed  Google Scholar 

  42. Yu P, Liu M, Zhang B, Jiang H. Response to comment on the original paper entitled "neural cell adhesion molecule-1 may be a new biomarker of coronary artery disease". Int J Cardiol. 2018;271:349. https://doi.org/10.1016/j.ijcard.2018.06.020.

    Article  PubMed  Google Scholar 

  43. Zinellu A, et al. Impact of cholesterol lowering treatment on plasma kynurenine and tryptophan concentrations in chronic kidney disease: relationship with oxidative stress improvement. Nutr Metab Cardiovasc Dis. 2015;25:153–9. https://doi.org/10.1016/j.numecd.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  44. Benito S, et al. Plasma biomarker discovery for early chronic kidney disease diagnosis based on chemometric approaches using LC-QTOF targeted metabolomics data. J Pharm Biomed Anal. 2018;149:46–56. https://doi.org/10.1016/j.jpba.2017.10.036.

    Article  CAS  PubMed  Google Scholar 

  45. van Timmeren MM, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 2007;212:209–17. https://doi.org/10.1002/path.2175.

    Article  CAS  PubMed  Google Scholar 

  46. Alharazy SM, et al. Serum neutrophil gelatinase-associated lipocalin and cystatin C are early biomarkers of contrast-induced nephropathy after coronary angiography in patients with chronic kidney disease. Angiology. 2014;65:436–42. https://doi.org/10.1177/0003319713483918.

    Article  CAS  PubMed  Google Scholar 

  47. Peralta CA, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA. 2011;305:1545–52. https://doi.org/10.1001/jama.2011.468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park J, Sunkara V, Kim TH, Hwang H, Cho YK. Lab-on-a-disc for fully integrated multiplex immunoassays. Anal Chem. 2012;84:2133–40. https://doi.org/10.1021/ac203163u.

    Article  CAS  PubMed  Google Scholar 

  49. Hansmann G, et al. Design and validation of an endothelial progenitor cell capture chip and its application in patients with pulmonary arterial hypertension. J Mol Med (Berl). 2011;89:971–83. https://doi.org/10.1007/s00109-011-0779-6.

    Article  PubMed  Google Scholar 

  50. Gundogdu G, Gundogdu K. A novel biomarker in patients with knee osteoarthritis: adropin. Clin Rheumatol. 2018;37:2179–86. https://doi.org/10.1007/s10067-018-4052-z.

    Article  PubMed  Google Scholar 

  51. Sharma A, et al. Acute phase reactant, Pentraxin 3, as a novel marker for the diagnosis of rheumatoid arthritis. Clin Chim Acta. 2018;480:65–70. https://doi.org/10.1016/j.cca.2018.01.035.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou JD, et al. Methylation-independent CHFR expression is a potential biomarker affecting prognosis in acute myeloid leukemia. J Cell Physiol. 2018;233:4707–14. https://doi.org/10.1002/jcp.26253.

    Article  CAS  PubMed  Google Scholar 

  53. Shamsipur M, Emami M, Farzin L, Saber R. A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens Bioelectron. 2018;103:54–61. https://doi.org/10.1016/j.bios.2017.12.022.

    Article  CAS  PubMed  Google Scholar 

  54. Kadimisetty K, et al. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron. 2016;77:188–93. https://doi.org/10.1016/j.bios.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16:489–96. https://doi.org/10.1039/c5lc01117e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip. 2014;14:3773–80. https://doi.org/10.1039/c4lc00662c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sonnenberg A, et al. Dielectrophoretic isolation and detection of cfc-DNA nanoparticulate biomarkers and virus from blood. Electrophoresis. 2013;34:1076–84. https://doi.org/10.1002/elps.201200444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mughal F, et al. Microfluidic channel-assisted screening of hematopoietic malignancies. Genes Chromosomes Cancer. 2014;53:255–63. https://doi.org/10.1002/gcc.22137.

    Article  CAS  PubMed  Google Scholar 

  59. Riahi R, et al. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci Rep. 2016;6:24598. https://doi.org/10.1038/srep24598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mi S, Yi X, Du Z, Xu Y, Sun W. Construction of a liver sinusoid based on the laminar flow on chip and self-assembly of endothelial cells. Biofabrication. 2018;10:025010. https://doi.org/10.1088/1758-5090/aaa97e.

    Article  CAS  PubMed  Google Scholar 

  61. Lee SA, et al. Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip. 2013;13:3529–37. https://doi.org/10.1039/c3lc50197c.

    Article  CAS  PubMed  Google Scholar 

  62. Bhise NS, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8:014101. https://doi.org/10.1088/1758-5090/8/1/014101.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang YS, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park J, et al. Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer's disease. Lab Chip. 2015;15:141–50. https://doi.org/10.1039/c4lc00962b.

    Article  CAS  PubMed  Google Scholar 

  65. Fan Y, Nguyen DT, Akay Y, Xu F, Akay M. Engineering a brain cancer chip for high-throughput drug screening. Sci Rep. 2016;6:25062. https://doi.org/10.1038/srep25062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giacomelli E, et al. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development. 2017;144:1008–17. https://doi.org/10.1242/dev.143438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bergstrom G, Christoffersson J, Schwanke K, Zweigerdt R, Mandenius CF. Stem cell derived in vivo-like human cardiac bodies in a microfluidic device for toxicity testing by beating frequency imaging. Lab Chip. 2015;15:3242–9. https://doi.org/10.1039/c5lc00449g.

    Article  PubMed  Google Scholar 

  68. Li L, et al. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation. Mol Pharm. 2014;11:2009–15. https://doi.org/10.1021/mp5000532.

    Article  CAS  PubMed  Google Scholar 

  69. Abaci HE, Gledhill K, Guo Z, Christiano AM, Shuler ML. Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip. 2015;15:882–8. https://doi.org/10.1039/c4lc00999a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shah P, et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun. 2016;7:11535. https://doi.org/10.1038/ncomms11535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12:2165–74. https://doi.org/10.1039/c2lc40074j.

    Article  CAS  PubMed  Google Scholar 

  72. Hassell BA, et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 2017;21:508–16. https://doi.org/10.1016/j.celrep.2017.09.043.

    Article  CAS  PubMed  Google Scholar 

  73. Kim S, et al. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication. 2016;8:015021. https://doi.org/10.1088/1758-5090/8/1/015021.

    Article  PubMed  Google Scholar 

  74. Venugopal Menon N, et al. A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioeng. 2018;2:016103. https://doi.org/10.1063/1.4993762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Namdee K, Thompson AJ, Charoenphol P, Eniola-Adefeso O. Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir. 2013;29:2530–5. https://doi.org/10.1021/la304746p.

    Article  CAS  PubMed  Google Scholar 

  76. Hao S, et al. A spontaneous 3D bone-on-a-chip for bone metastasis study of breast cancer cells. Small. 2018;14:e1702787. https://doi.org/10.1002/smll.201702787.

    Article  CAS  PubMed  Google Scholar 

  77. Chan YK, et al. In vitro modeling of emulsification of silicone oil as intraocular tamponade using microengineered eye-on-a-chip. Invest Ophthalmol Vis Sci. 2015;56:3314–9. https://doi.org/10.1167/iovs.15-16728.

    Article  CAS  PubMed  Google Scholar 

  78. Rigat-Brugarolas LG, et al. A functional microengineered model of the human splenon-on-a-chip. Lab Chip. 2014;14:1715–24. https://doi.org/10.1039/c3lc51449h.

    Article  CAS  PubMed  Google Scholar 

  79. Huh D, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4:159ra147. https://doi.org/10.1126/scitranslmed.3004249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Choucha Snouber L, et al. Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips. Toxicol Sci. 2013;132:8–20. https://doi.org/10.1093/toxsci/kfs230.

    Article  CAS  PubMed  Google Scholar 

  81. Musah S, et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng. 2017;1:ARTN 0069. https://doi.org/10.1038/s41551-017-0069.

    Article  CAS  Google Scholar 

  82. Tsamandouras N, et al. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J. 2017;19:1499–512. https://doi.org/10.1208/s12248-017-0122-4.

    Article  CAS  PubMed  Google Scholar 

  83. Zheng F, et al. Organ-on-a-Chip Systems: microengineering to biomimic living systems. Small. 2016;12:2253–82.

    Article  CAS  PubMed  Google Scholar 

  84. Laverty H, et al. How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br J Pharmacol. 2011;163:675–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grosberg A, Alford PW, McCain ML, Parker KKJL, o. a. c. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. 2011;11:4165–73.

    Google Scholar 

  86. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip. 2013;13:3599–608. https://doi.org/10.1039/c3lc50350j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mathur A, et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep. 2015;5:8883. https://doi.org/10.1038/srep08883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A. 2016;113:E7–15. https://doi.org/10.1073/pnas.1522193112.

    Article  CAS  PubMed  Google Scholar 

  89. Mosayyebi A, et al. Engineering solutions to ureteral stents: material, coating and design. Cent European J Urol. 2017;70:270–4. https://doi.org/10.5173/ceju.2017.1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Millet LJ, Gillette MUJTIN. New perspectives on neuronal development via microfluidic environments. 2012;35:752–61.

    Google Scholar 

  91. Peyrin JM, et al. Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip. 2011;11:3663–73. https://doi.org/10.1039/c1lc20014c.

    Article  CAS  PubMed  Google Scholar 

  92. Kunze A, Giugliano M, Valero A, Renaud P. Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials. 2011;32:2088–98. https://doi.org/10.1016/j.biomaterials.2010.11.047.

    Article  CAS  PubMed  Google Scholar 

  93. Wikswo JP, et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip. 2013;13:3496–511. https://doi.org/10.1039/c3lc50243k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vernetti L, et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci Rep. 2017;7:42296. https://doi.org/10.1038/srep42296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Midwoud PM, Merema MT, Verpoorte E, Groothuis GMJL. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip. 2010;10:2778–86.

    Article  PubMed  Google Scholar 

  96. Satoh T, et al. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip. 2017;18:115–25. https://doi.org/10.1039/c7lc00952f.

    Article  CAS  PubMed  Google Scholar 

  97. Asaumi Y, Sasaki N. Photolithography-free vessel-on-a-chip to simulate tumor cell extravasation. Sens Mater. 2021;33 https://doi.org/10.18494/sam.2021.3073.

  98. Trapecar M, et al. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci Adv. 2021;7 https://doi.org/10.1126/sciadv.abd1707.

  99. Marx U. Human body on a chip-are we there yet? Toxicol Lett. 2021;350:S36.

    Article  Google Scholar 

  100. Zhang B, Korolj A, Lai BFL, Radisic MJNRM. Advances in organ-on-a-chip engineering. 2018;3:257–78.

    Google Scholar 

  101. Kim JY, et al. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. J Biotechnol. 2015;205:24–35. https://doi.org/10.1016/j.jbiotec.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  102. da Ponte RM, et al. Monolithic integration of a smart temperature sensor on a modular silicon-based organ-on-a-chip device. Sensor Actuat a-Phys. 2021;317:ARTN 112439. https://doi.org/10.1016/j.sna.2020.112439.

    Article  CAS  Google Scholar 

  103. Mou L, et al. Multiplexed lab-on-a-chip bioassays for testing antibodies against SARS-CoV-2 and its variants in multiple individuals. Anal Chem. 2022;94:2510–6. https://doi.org/10.1021/acs.analchem.1c04383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hsu HH, et al. Study 3D endothelial cell network formation under various oxygen microenvironment and hydrogel composition combinations using upside-down microfluidic devices. Small. 2021;17:ARTN 2006091. https://doi.org/10.1002/smll.202006091.

    Article  CAS  Google Scholar 

  105. Liu H, et al. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater. 2019;31:e1902042. https://doi.org/10.1002/adma.201902042.

    Article  CAS  PubMed  Google Scholar 

  106. Pellegrini L, Lancaster MA. Modeling neurodegeneration with mutant-tau organoids. Cell. 2021;184:4377–9. https://doi.org/10.1016/j.cell.2021.07.031.

    Article  CAS  PubMed  Google Scholar 

  107. Goulart E, et al. Adult and iPS-derived non-parenchymal cells regulate liver organoid development through differential modulation of Wnt and TGF-beta. Stem Cell Res Ther. 2019;10:258. https://doi.org/10.1186/s13287-019-1367-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miyoshi T, Hiratsuka K, Saiz EG, Morizane R. Kidney organoids in translational medicine: disease modeling and regenerative medicine. Dev Dyn. 2020;249:34–45. https://doi.org/10.1002/dvdy.22.

    Article  CAS  PubMed  Google Scholar 

  109. Sorrentino G, et al. Mechano-modulatory synthetic niches for liver organoid derivation. Nat Commun. 2020;11:3416. https://doi.org/10.1038/s41467-020-17161-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chambers SM, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80. https://doi.org/10.1038/nbt.1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee CT, et al. CYP3A5 mediates effects of cocaine on human neocorticogenesis: studies using an in vitro 3D self-organized hPSC model with a single cortex-like unit. Neuropsychopharmacology. 2017;42:774–84. https://doi.org/10.1038/npp.2016.156.

    Article  CAS  PubMed  Google Scholar 

  112. Yan Y, et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells. 2005;23:781–90. https://doi.org/10.1634/stemcells.2004-0365.

    Article  CAS  PubMed  Google Scholar 

  113. Sugimoto S, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature. 2021;592:99–104. https://doi.org/10.1038/s41586-021-03247-2.

    Article  CAS  PubMed  Google Scholar 

  114. Gjorevski N, et al. Tissue geometry drives deterministic organoid patterning. Science. 2022;375:eaaw9021. https://doi.org/10.1126/science.aaw9021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Park SE, Georgescu A, Huh D. Organoids-on-a-chip. Science. 2019;364:960–5. https://doi.org/10.1126/science.aaw7894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gijzen L, et al. Culture and analysis of kidney tubuloids and perfused tubuloid cells-on-a-chip. Nat Protoc. 2021;16:2023–50. https://doi.org/10.1038/s41596-020-00479-w.

    Article  CAS  PubMed  Google Scholar 

  117. Wang Y, Wang L, Guo Y, Zhu Y, Qin J. Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv. 2018;8:1677–85. https://doi.org/10.1039/c7ra11714k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human brain organoids on a Chip reveal the physics of folding. Nat Phys. 2018;14:515–22. https://doi.org/10.1038/s41567-018-0046-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ao Z, et al. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal Chem. 2020;92:4630–8. https://doi.org/10.1021/acs.analchem.0c00205.

    Article  CAS  PubMed  Google Scholar 

  120. Kretzschmar K, Clevers HJDC. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016;38:590–600.

    Article  CAS  PubMed  Google Scholar 

  121. Demers CJ, et al. Development-on-chip: in vitro neural tube patterning with a microfluidic device. Development. 2016;143:1884–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Demers CJ, et al. Development-on-chip: in vitro neural tube patterning with a microfluidic device. Development. 2016;143:1884–92. https://doi.org/10.1242/dev.126847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang YQ, Wang L, Zhu YJ, Qin JH. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip. 2018;18:851–60.

    Google Scholar 

  124. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9:2329–40. https://doi.org/10.1038/nprot.2014.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lancaster MA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9. https://doi.org/10.1038/nature12517.

    Article  CAS  PubMed  Google Scholar 

  126. Tavana H, Zamankhan P, Christensen PJ, Grotberg JB, Takayama SJBM. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed Microdevices. 2011;13:731–42.

    Article  PubMed  Google Scholar 

  127. Huh D, et al. A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4:159ra147.

    Article  PubMed  PubMed Central  Google Scholar 

  128. McCain ML, Sheehy SP, Grosberg A, Goss JA, Parker KK. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc Natl Acad Sci U S A. 2013;110:9770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang G, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Si L, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:815–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jeong S, et al. A three-dimensional arrayed microfluidic blood-brain barrier model with integrated electrical sensor array. IEEE Trans Biomed Eng. 2018;65:431–9. https://doi.org/10.1109/TBME.2017.2773463.

    Article  PubMed  Google Scholar 

  132. Choi J, et al. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip. 2013;13:280–7. https://doi.org/10.1039/c2lc41055a.

    Article  CAS  PubMed  Google Scholar 

  133. Lu Y, et al. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Anal Chem. 2013;85:3971–6. https://doi.org/10.1021/ac4004248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jellali R, et al. Investigation of steatosis profiles induced by pesticides using liver organ-on-chip model and omics analysis. Food Chem Toxicol. 2021;152:112155.

    Article  CAS  PubMed  Google Scholar 

  135. Lee S, et al. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed Microdevices. 2017;19:22. https://doi.org/10.1007/s10544-017-0156-5.

    Article  CAS  PubMed  Google Scholar 

  136. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shuler ML, Esch MBJP, Chemistry A. Body-on-a chip: using microfluidic systems to predict human responses to drugs. 2010;82:1635–45.

    Google Scholar 

  138. Huh D, Torisawa Y-S, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab Chip. 2012;12:2156–64.

    Google Scholar 

  139. Paggi CA, Teixeira LM, Le Gac S, Karperien M. Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat Rev Rheumatol. 2022;1-15

    Google Scholar 

  140. Yin F, et al. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs. Lab Chip. 2021;21:571–81. https://doi.org/10.1039/d0lc00921k.

    Article  CAS  PubMed  Google Scholar 

  141. Domansky K, et al. Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip. 2013;13:3956–64. https://doi.org/10.1039/c3lc50558h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundamental Research Funds for the Central Universities (No. 2019CDYGYB016, 2022CDJXY-026), National Natural Science Foundation of China grants (No. 81501612, 31872751), National key research and development program (No. 2020YFC2005905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Tian .

Editor information

Editors and Affiliations

8.1 Electronic Supplementary Material

Organ Chips and Visualization of Biological Systems (MP4 89372 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, T., Liu, J., Zhu, H. (2023). Organ Chips and Visualization of Biological Systems. In: Liu, Z. (eds) Visualized Medicine. Advances in Experimental Medicine and Biology, vol 1199. Springer, Singapore. https://doi.org/10.1007/978-981-32-9902-3_8

Download citation

Publish with us

Policies and ethics