Skip to main content

Nanobiotechnology Advancements in Lateral Flow Immunodiagnostics

  • Chapter
  • First Online:
Nanobiomaterial Engineering

Abstract

Nanobiotechnology has emerged as an effective tool in the development of diagnostics, biomaterials, drug delivery systems, and numerous point-of-care (POC) applications in recent years. Proteins, antigens, antibodies, amino acids, DNA, etc. are conjugated with the nanomaterial to develop the potential biosensors. Lateral flow immunoassay (LFIA) is well-established technology that has been used in the development of the variety of POC techniques in the biomedical field for qualitative as well as quantitative diagnostics. Numerous LFIA test kits have been developed and scripted in the form of research publications, but most of them are not commercialized. In this chapter, the recent nanobiotechnological advancements in the development of LFIA with respect to the signal amplification and sensitivity enhancement are reviewed. Types of LFIA, advantages and disadvantages of advancements made in the detection of LFIA, smartphone-based detection techniques in LFIA, etc. are discussed with respect to their importance in the LFIA application. Various techniques used for the LFIA sensitivity enhancement are emphasized along with its effect on the application. The sensitivity of LFIA can be enhanced by implementing various mechanistic approaches such as the use of brighter sensor molecule, adjusting the position of test line on the LFIA strip, altering LFIA sample preparation procedure and physicochemical parameters, addition of additives to the LFIA reagents, using an additional component in LFIA strip assembly, post-assay test line color enhancement, removal of the interfering entities in the complex analyte, increase in number of the detection sites, increase in binding area of the detector-capture antibody pair, improved detection capabilities, highly sensitive imaging applications, etc. Selectivity and sensitivity enhancement has improved the detection capability, but continuous efforts are needed on the reproducibility, reliability, and simplicity of the LFIA techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MH, Hussain KK, Gurudatt NG, Chandra P, Shim Y-B (2018) Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens Bioelectron 116:108–115

    Article  CAS  PubMed  Google Scholar 

  • Aoyama S, Akiyama Y, Monden K, Yamada M, Seki M (2019) Thermally imprinted microcone structure-assisted lateral-flow immunoassay platforms for detecting disease marker proteins. Analyst. https://doi.org/10.1039/C8AN01903G

    Article  CAS  PubMed  Google Scholar 

  • Asiaei S, Bidgoli MR, ZadehKafi A, Saderi N, Siavashi M (2018) Sensitivity and colour intensity enhancement in lateral flow immunoassay tests by adjustment of test line position. Clin Chim Acta 487:210–215

    Article  CAS  PubMed  Google Scholar 

  • Bellah MM, Christensen SM, Iqbal SM (2012) Nanostructures for medical diagnostics. J Nanomater 2012:1–21

    Article  CAS  Google Scholar 

  • Borse V, Srivastava R (2019) Fluorescence lateral flow immunoassay based point-of-care nanodiagnostics for orthopedic implant-associated infection. Sensors Actuators B Chem 280:24–33

    Article  CAS  Google Scholar 

  • Borse V, Jain P, Sadawana M, Srivastava R (2016a) ‘Turn-on’ fluorescence assay for inorganic phosphate sensing. Sensors Actuators B Chem 225:340–347

    Article  CAS  Google Scholar 

  • Borse V, Sadawana M, Srivastava R (2016b) CdTe quantum dots: aqueous phase synthesis, stability studies and protein conjugation for development of biosensors. In: Andrews DL, Nunzi J-M, Ostendorf A (eds) SPIE Photonics Europe. International Society for Optics and Photonics, p 988423

    Google Scholar 

  • Borse V, Patil AS, Srivastava R (2017a) Development and testing of portable fluorescence reader (PorFloRâ„¢). In: 2017 ninth International Conference on Communication Systems and Networks, COMSNETS 2017

    Google Scholar 

  • Borse V, Thakur M, Sengupta S, Srivastava R (2017b) N-doped multi-fluorescent carbon dots for ‘turn off-on’ silver-biothiol dual sensing and mammalian cell imaging application. Sensors Actuators, B Chem 248:481–492

    Article  CAS  Google Scholar 

  • Borse V, Kashikar A, Srivastava R (2018) Fluorescence stability of mercaptopropionic acid capped cadmium telluride quantum dots in various biochemical buffers. J Nanosci Nanotechnol 18:2582–2591

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Kang K, Liu Y, Wang Y, He X (2018) Development of a lateral flow immunoassay of C-reactive protein detection based on red fluorescent nanoparticles. Anal Biochem 556:129–135

    Article  CAS  PubMed  Google Scholar 

  • Chamorro-Garcia A, de la Escosura-Muñiz A, Espinoza-Castañeda M, Rodriguez-Hernandez CJ, de Torres C, Merkoçi A (2016) Detection of parathyroid hormone-like hormone in cancer cell cultures by gold nanoparticle-based lateral flow immunoassays. Nanomed Nanotechnol Biol Med 12:53–61

    Article  CAS  Google Scholar 

  • Chandra P, Koh WCA, Noh H-B, Shim Y-B (2012) In vitro monitoring of i-NOS concentrations with an immunosensor: the inhibitory effect of endocrine disruptors on i-NOS release. Biosens Bioelectron 32:278–282

    Article  CAS  PubMed  Google Scholar 

  • Cheng N, Song Y, Zeinhom MMA, Chang Y-C, Sheng L, Li H, Du D, Li L, Zhu M-J, Luo Y, Xu W, Lin Y (2017) Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl Mater Interfaces 9:40671–40680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Hwang J, Lee S, Lim DW, Joo H, Choo J (2017) Quantitative analysis of thyroid-stimulating hormone (TSH) using SERS-based lateral flow immunoassay. Sensors Actuators B Chem 240:358–364

    Article  CAS  Google Scholar 

  • Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 Targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28:2565–2574

    Article  CAS  Google Scholar 

  • Gong Y, Hu J, Choi JR, You M, Zheng Y, Xu B, Wen T, Xu F (2017) Improved LFIAs for highly sensitive detection of BNP at point-of-care. Int J Nanomedicine 12:4455–4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y (2016) Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens Bioelectron 75:166–180

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Peng J, Han J, Zhang G, Huang Y, Duan M, Liu D, Xiong Y, Xia S, Lai W (2019) A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Food Chem 276:333–341

    Article  CAS  PubMed  Google Scholar 

  • Ji T, Xu X, Wang X, Zhou Q, Ding W, Chen B, Guo X, Hao Y, Chen G (2019) Point of care upconversion nanoparticles-based lateral flow assay quantifying myoglobin in clinical human blood samples. Sensors Actuators B Chem 282:309–316

    Article  CAS  Google Scholar 

  • Jin B, Yang Y, He R, Park Y II, Lee A, Bai D, Li F, Lu TJ, Xu F, Lin M (2018) Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sensors Actuators B Chem 276:48–56

    Article  CAS  Google Scholar 

  • Kim W, Lee S, Jeon S (2018) Enhanced sensitivity of lateral flow immunoassays by using water-soluble nanofibers and silver-enhancement reactions. Sensors Actuators B Chem 273:1323–1327

    Article  CAS  Google Scholar 

  • Lin L-K, Stanciu LA (2018) Bisphenol a detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay. Sensors Actuators B Chem 276:222–229

    Article  CAS  Google Scholar 

  • Loynachan CN, Thomas MR, Gray ER, Richards DA, Kim J, Miller BS, Brookes JC, Agarwal S, Chudasama V, McKendry RA, Stevens MM (2018) Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12:279–288

    Article  CAS  PubMed  Google Scholar 

  • Mahato K, Chandra P (2019) Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens Bioelectron 128:9–16

    Article  CAS  PubMed  Google Scholar 

  • Mahato K, Srivastava A, Chandra P (2017) Paper based diagnostics for personalized health care: Emerging technologies and commercial aspects. Biosens Bioelectron 96:246–259

    Article  CAS  PubMed  Google Scholar 

  • Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P (2018) Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. Handb Immunoass Technol:359–414

    Google Scholar 

  • Makkar RL, Syeda Aliya S, Borse V, Srivastava R (2018) Design and development of portable fluorescence reader using silicon photo multiplier (SiPM) sensor. Opt Sens Detect V 106800B:12

    Article  Google Scholar 

  • Mandal R, Baranwal A, Srivastava A, Chandra P (2018) Evolving trends in bio/chemical sensor fabrication incorporating bimetallic nanoparticles. Biosens Bioelectron 117:546–561

    Article  CAS  PubMed  Google Scholar 

  • Ojaghi A, Pallapa M, Tabatabaei N, Rezai P (2018) High-sensitivity interpretation of lateral flow immunoassays using thermophotonic lock-in imaging. Sensors Actuators A Phys 273:189–196

    Article  CAS  Google Scholar 

  • Preechakasedkit P, Osada K, Katayama Y, Ruecha N, Suzuki K, Chailapakul O, Citterio D (2018) Gold nanoparticle core–europium(iii) chelate fluorophore-doped silica shell hybrid nanocomposites for the lateral flow immunoassay of human thyroid stimulating hormone with a dual signal readout. Analyst 143:564–570

    Article  CAS  PubMed  Google Scholar 

  • Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63

    Article  PubMed  CAS  Google Scholar 

  • Razo S, Panferov V, Safenkova I, Varitsev Y, Zherdev A, Pakina E, Dzantiev B, Razo SC, Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Pakina EN, Dzantiev BB (2018) How to improve sensitivity of sandwich lateral flow immunoassay for corpuscular antigens on the example of potato Virus Y? Sensors 18:3975

    Article  CAS  PubMed Central  Google Scholar 

  • Ren W, Cho I-H, Zhou Z, Irudayaraj J (2016) Ultrasensitive detection of microbial cells using magnetic focus enhanced lateral flow sensors. Chem Commun 52:4930–4933

    Article  CAS  Google Scholar 

  • Ruivo S, Azevedo AM, Prazeres DMF (2017) Colorimetric detection of D-dimer in a paper-based immunodetection device. Anal Biochem 538:5–12

    Article  CAS  PubMed  Google Scholar 

  • Sajid M, Kawde A-N, Daud M (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19:689–705

    Article  Google Scholar 

  • Salminen T, Knuutila A, Barkoff A-M, Mertsola J, He Q (2018) A rapid lateral flow immunoassay for serological diagnosis of pertussis. Vaccine 36:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Serebrennikova K, Samsonova J, Osipov A (2018) Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett 10:24

    Article  CAS  Google Scholar 

  • Srinivasan B, O’Dell D, Finkelstein JL, Lee S, Erickson D, Mehta S (2018) ironPhone: mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin. Biosens Bioelectron 99:115–121

    Article  CAS  PubMed  Google Scholar 

  • Takalkar S, Baryeh K, Liu G (2017) Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens Bioelectron 98:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M, Lei L, Xie W, Yang Q, Li CM, Liu Y (2019) Copper deposition-induced efficient signal amplification for ultrasensitive lateral flow immunoassay. Sensors Actuators B Chem 282:96–103

    Article  CAS  Google Scholar 

  • Tsai T-T, Huang T-H, Chen C-A, Ho NY-J, Chou Y-J, Chen C-F (2018) Development a stacking pad design for enhancing the sensitivity of lateral flow immunoassay. Sci Rep 8:17319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyay N, Nara S (2018) Lateral flow assay for rapid detection of Staphylococcus aureus enterotoxin A in milk. Microchem J 137:435–442

    Article  CAS  Google Scholar 

  • Wang Z, Jing J, Ren Y, Guo Y, Tao N, Zhou Q, Zhang H, Ma Y, Wang Y (2019) Preparation and application of selenium nanoparticles in a lateral flow immunoassay for clenbuterol detection. Mater Lett 234:212–215

    Article  CAS  Google Scholar 

  • Wiriyachaiporn N, Maneeprakorn W, Apiwat C, Dharakul T (2015) Dual-layered and Double-targeted Nanogold based Lateral Flow Immunoassay for Influenza Virus. Microchim Acta 182:85–93

    Article  CAS  Google Scholar 

  • Wu X, Huang M, Yu S, Kong F (2016) Rapid and quantitative detection of 4(5)-methylimidazole in caramel colours: a novel fluorescent-based immunochromatographic assay. Food Chem 190:843–847

    Article  CAS  PubMed  Google Scholar 

  • You M, Lin M, Gong Y, Wang S, Li A, Ji L, Zhao H, Ling K, Wen T, Huang Y, Gao D, Ma Q, Wang T, Ma A, Li X, Xu F (2017) Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano 11:6261–6270

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Wu J, Li Y, Wu Y, Huang T, Tang D (2014) Hollow nanogold microsphere-signalized lateral flow immunodipstick for the sensitive determination of the neurotoxin brevetoxin B. Microchim Acta 181:1447–1454

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Dr. Vivek Borse would like to thank the Department of Science and Technology, Government of India, for the INSPIRE Faculty Fellowship Award (IFA18-ENG266, DST/INSPIRE/04/2018/000991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Borse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borse, V., Srivastava, R. (2020). Nanobiotechnology Advancements in Lateral Flow Immunodiagnostics. In: Chandra, P., Prakash, R. (eds) Nanobiomaterial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9840-8_10

Download citation

Publish with us

Policies and ethics