Skip to main content

Beneficial Effects of Weed Endophytic Bacteria: Diversity and Potentials of Their Usage in Sustainable Agriculture

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Plant growth-promoting endophytic bacteria dwell a relatively privileged niche within the host plants and confer beneficial effects to their hosts. These plant probiotics from weed species are poorly explored but possess the tremendous potentials for application in eco-friendly sustainable agriculture. Bacteria from diverse taxonomic genera such as Sinorhizobium, Bacillus, Pseudomonas, Marinorhizobium, Sphingomonas, Sphingobium, Herbaspirillum, Micrococcus, Microbacterium, and Rhodococcus are associated with weed species. Weed-originated plant growth-promoting bacteria (PGPB) exert beneficial effects to their host plants through fixation of atmospheric nitrogen and solubilization of insoluble essential mineral elements (e.g., phosphorus) produce phytohormones (e.g., indole-3-acetic acid), induce systemic resistance (ISR) response to hosts, and secrete antimicrobial substances and other metabolites to protect their hosts from biotic and abiotic stresses. The ISR have tied to disease resistance and abiotic tolerance of plants against drought, cold, salinity, and extreme temperature. As there is no comprehensive review on weed endophytes, this study reviews taxonomic diversity and beneficial effects of weed-associated bacteria and discusses how these natural bioresources could be utilized in agricultural productivity to a new dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah RAB, Mokni-Tlili S, Nefzi A, Jabnoun Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Article  Google Scholar 

  • Addiscott TM, Whitmore AP, Powlson DS (1991) Farming, fertilizers and the nitrate problem. CAB International, Wallingford

    Google Scholar 

  • Aldrich RJ (1984) Weed-crop ecology: principles in weed management. Breton Publishers, North Scituate

    Google Scholar 

  • Alonso A, Sanchez P & Martinez JL (2000) Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance. Antimicrob Agents Chemother 44:1778–1782

    Google Scholar 

  • Anon (1997a) Cultivating Island solutions: round table on resource land use and stewardship. Queen’s Printer, Charlottetown

    Google Scholar 

  • Anon (1997b) Agriculture in harmony with nature: strategy for environmentally sustainable agriculture and agri-food development in Canada. Agriculture and Agri-Food Canada. Publication 1937/E. Ottawa, Ontario, Canada

    Google Scholar 

  • Ardanov P, Ovcharenko L, Zaets I, Kozyrovska N, Pirttilä AM (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49

    Article  Google Scholar 

  • Bacon CW, Glenn AE, Yates IE (2008) Fusarium verticillioides: managing the endophytic association with maize for reduced fumonisins accumulation. Toxin Rev 27:411–446

    Article  CAS  Google Scholar 

  • Bakker AW, Schippers P (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Barazani O, Friedman J (1999) Allelopathic bacteria and their impact on higher plants. Crit Rev Plant Sci 18:741–755

    Article  CAS  Google Scholar 

  • Barbieri P, Zannelli T, Galli E, Zanetti G (1986) Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett 36:87–90

    Article  CAS  Google Scholar 

  • Bary AB (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. In: Hofmeister W (ed). Handbuch der Physiologischen Botanik. Zweiter Band. Wilhelm Engelmann, Leipzig. Available from: http://babel.hathitrust.org/cgi/pt?id=hvd. 32044053007316. Accessed: 2017-10-02

  • Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gammaproteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27(4):462–468

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Marten P, Ballin G (1996) Stenotrophomonas maltophilia in the rhizosphere of oilseed rape — occurrence, characterization and interaction with phytopathogenic fungi. Microbiol Res 151:19–27

    Article  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51(2):215–229

    Article  CAS  PubMed  Google Scholar 

  • Bhandari DC, Sen DN (1979) Agro-ecosystem analysis of the Indian arid zone Indigofera cordifolia as a weed. Agro-Ecosystems 5(3):257–262

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clement C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603

    Article  CAS  PubMed  Google Scholar 

  • Brown M (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197

    Article  CAS  Google Scholar 

  • Cao ZJ et al (2009) Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J Ind Microbiol Biotechnol 36:181–188

    Article  CAS  PubMed  Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Carroll GC (1991) Fungal associates of woody plants as insect antagonists in leaves and stems. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 253–271

    Google Scholar 

  • Chandler JM (1980) Assessing losses caused by weeds. In: Proceedings of the E.C. Stakman commemorative symposium. Miscellaneous publication no. 7. Agriculture experiment station, University of Minnesota, St. Paul, Minn., U.S.A. pp 234–240

    Google Scholar 

  • Chandrashekhara, Niranjsnraj S, Deepak SA, Amruthesh KN, Shetty NP, Shetty HS (2007) Endophytic bacteria from different plant origin enhance growth and induce downy mildew resistance in pearl millet. Asian J Plant Pathol 1(1):1–11

    Article  Google Scholar 

  • Chanway CP (1996) Endophytes: they’re not just fungi. Can J Bot 74(3):321–322

    Article  Google Scholar 

  • Chanway CP (1998) Bacterial endophytes: ecological and practical implications. Sydowia 50:149–170

    Google Scholar 

  • Chanway CP, Anand R, Yang H (2014) Nitrogen fixation outside and inside plant tissues. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. In Tech, Croatia, pp 3–23. https://doi.org/10.5772/57532

    Chapter  Google Scholar 

  • Chi F, Shen S, Cheng H, Jing Y, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71(11):7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocking E (2003) Endophytic colonization of plant roots by N-fixing bacteria. Plant Soil 252(1):169–175

    Article  CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62(1):188–197

    Article  PubMed  Google Scholar 

  • Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286

    CAS  Google Scholar 

  • DéFago G, Berling CH, Burger U, Haas D, Kahr G, Keel C, Voisard C, Wirthner P, Wüthrich B (1990) Suppression of black rot of tobacco and other root diseases by strains of Pseudomonas fluorescens: potential applications and mechanisms. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 93–108

    Google Scholar 

  • Estrada AER, Jonkers W, Kistler HC, May G (2012) Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a a pathogen, and their shared plant host. Fungal Genet Biol 49:578–587

    Article  Google Scholar 

  • Fahey JW, Dimock MB, Tomasino SF, Taylor JM, Carlson PS (1991) Genetically engineered endophytes as biocontrol agents: a case study from industry. In: Microbial ecology of leaves. Springer, New York, pp 401–411

    Chapter  Google Scholar 

  • Fickett ND, Boerboom CM, Stoltenberg DE (2013) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27(1):54–62

    Article  Google Scholar 

  • Fredrickson JK, Elliott LF (1985) Effects on winter wheat seedling growth by toxin producing rhizobacteria. Plant Soil 83:399–409

    Article  Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1993) Treatment of potato tubers with a growth promoting Pseudomonas sp.: plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150:51–60

    Article  Google Scholar 

  • Gagné S, Richard C, Antoun H (1989) Pouvoir pathogène des bactéries endoracinaires de la luzerne. Can J Plant Pathol 11:22–27

    Article  Google Scholar 

  • Galai S, Limam F, Marzouki MN (2008) A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetics dyes. Appl Biochem Biotechnol 158:416–431

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, Overbeek LSV, Berg G, Pirttila AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris GH, Hesterman OB, Paul EA, Peters SE, Jahnke RR (1994) Fate of legume and fertilizer nitrogen-15 in a long-term cropping systems experiment. Agron J 86:910–915

    Article  Google Scholar 

  • Holland MA (1997) Occam’s razor applied to hormonology: are cytokinins produced by plants? Plant Physiol 115:865–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT (2011) Potentials for biological control of plant diseases by Lysobacter spp., with special reference to strain SB-K88. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 335–364

    Chapter  Google Scholar 

  • Islam MT, von Tiedemann A (2011) 2,4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of the Peronospotomycete zoospores. World J Microbiol Biotechnol 27:2071–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee AP, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, Júnior AN, Castroagudín VL, Reges JTDA, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84. https://doi.org/10.1186/s12915-016-0309-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Rahman M, Piyush P, Aeron A (2017) Bacilli and Agrobiotechnology. An edited series book published by Springer International Publishing, p 416

    Google Scholar 

  • Jacobs MJ, Bugbee WM, Gabrielson DA (1985) Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Can J Bot 63(7):1262–1265

    Article  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15(9):894–906

    Article  CAS  PubMed  Google Scholar 

  • Janick J (1979) Horticultural science (3rd edn). W.H. Freeman, San Francisco, p 308. ISBN 0-7167-1031-5

    Google Scholar 

  • Khatun A, Farhana T, Sabir AA, Islam SMN, West HM, Rahman M, Islam T (2018) Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici. Zeitschrift fuer Naturforschung C 73(3–4):123–135. https://doi.org/10.1515/znc-2017-0065

    Article  CAS  Google Scholar 

  • Kirchhof G, Eckert B, Stoffels MJ, Baldani I, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW (1992) Plant growth promoting rhizobacteria as biological control agents. In: Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. Springer, Berlin/Heidelberg, pp 33–52

    Google Scholar 

  • Kloepper JW, Leong J, Tientze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Zablotowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 315–326

    Google Scholar 

  • Kobayashi D, Palumbo J (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–233

    Google Scholar 

  • Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krimi Z, Alim D, Djellout H, Tafifet L, Mohamed-mahmoud F, Raio MA (2016) Bacterial endophytes of weeds are effective biocontrol agents of Agrobacterium spp., Pectobacterium spp., and promote growth of tomato plants. Phytopathol Mediterr 55(2):184–196

    Google Scholar 

  • Kumar GP, Ahmed SKMH, Desai S, Amalraj ELD, Rasul A (2014) In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. Int J Bacteriol 2014:1–6. Article ID 195946

    Article  CAS  Google Scholar 

  • Lafi FF, Ramirez-Prado JS, Alam I, Bajic VB, Hirt H, Saad MM (2017) Draft genome sequence of plant growth–promoting Micrococcus luteus strain K39 isolated from Cyperus conglomeratus in Saudi Arabia. Genome Announc 5:e01520–e01516

    PubMed  PubMed Central  Google Scholar 

  • Lazarovits G, Nowak J (1997) Rhizobacteria for improvement of plant growth and establishment. Hortic Sci 32:188–192

    Google Scholar 

  • Loon LCV, Bakker PAHM, van der Heijdt WHW, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49(2):416–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Mastretta C et al (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207

    Article  CAS  PubMed  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9):8080–8811

    Article  Google Scholar 

  • Murty MG, Ladha JK (1988) Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108:281–285

    Article  Google Scholar 

  • Nave WR, Wax LM (1971) Effects of weeds on soybean yield and harvesting efficiency. Weed Sci 19:533–535

    Article  Google Scholar 

  • Naz I, Bano A (2010) Biochemical, molecular characterization and growth promoting effects of phosphate solubilizing Pseudomonas sp. isolated from weeds grown in salt range of Pakistan. Plant Soil 334:199–207

    Article  CAS  Google Scholar 

  • Newton AC, Fitt BDL, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373

    Article  CAS  PubMed  Google Scholar 

  • Okunishi S, Sako K, Mano H, Imamura A, Morisaki H (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20(3):168–177

    Article  Google Scholar 

  • Pages D, Rose J, Conrod S, Cuine S, Carrier P, Heulin T et al (2008) Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One 3(2):e1539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul LR, Chapman WK, Chanway CP (2013) Diazotrophic bacteria reside inside Suillus tomentosus/Pinus contorta tuberculate ectomycorrhizae. Botany 91(1):48–52

    Article  CAS  Google Scholar 

  • Pereira GVDM, Magalhaes KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63(2):405–417

    Article  Google Scholar 

  • Peterson LA, Peterson RT (1999) A field guide to edible wild plants: Eastern and entral North America. Houghton-Mifflin, Boston, p 345

    Google Scholar 

  • Putnam AR, Weston LA (1986) Adverse impacts of allelopathy in agricultural systems. In: The science of allelopathy. Wiley, New York, pp 43–56

    Google Scholar 

  • Rahman M, Sabir AS, Mukta JA, Khan MMA, Mohi-Ud-Di M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:2504. https://doi.org/10.1038/s41598-018-20235-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel WM, Thijs S, Janssen J, Longatti SMO, Bonaldi DS, Ribeiro PRA, Jambon I, Eevers N, Weyens N, Vangronsveld J, Moreira FMS (2016) Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. Int J Phytorem 19(2):142–156

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998a) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17(1):29–54

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998b) Life in grasses: Diazotrophic endophytes. Trends Microbol 6(4):139–144

    Article  CAS  Google Scholar 

  • Rice EL (1986) Allelopathic growth stimulation. In: The science of allelopathy. Wiley, New York, pp 23–42

    Google Scholar 

  • Richardson A, Barea JM, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone cross talking plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interaction with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172

    Article  CAS  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, Lelie DVD, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    Article  CAS  PubMed  Google Scholar 

  • Samad A, Antonielli L, Sessitsch A, Compant A, Trognitz F (2017a) Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Sci Rep 7:17336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch L (2017b) Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19(4):1407–1424

    Article  PubMed  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75–83

    Article  CAS  Google Scholar 

  • Scortichini M, Loreti S (2007) Occurrence of an endophytic, potentially pathogenic strain of Pseudomonas syringae in symptomless wild trees of Corylus avellana L. J Plant Pathol 89:431–434

    CAS  Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Siegert P et al (2007) Medium/means containing proteases from Stenotrophomonas maltophilia. Patent DE 102007033104 20070713

    Google Scholar 

  • Sloger C, Van Berkum P (1992) Approaches for enhancing nitrogen fixation in cereal crops. In: Dutta SK, Sloger C (eds) Biological nitrogen fixation associated with rice production. Oxford and IBH Publishing, New Delhi, pp 229–234

    Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180(5):872–882

    Article  CAS  PubMed  Google Scholar 

  • Spahillari M, Hammer K, Gladis T, Diederichsen A (1999) Weeds as a part of agrobiodiversity. Agriculture 28:227–232

    Google Scholar 

  • Sturz AV, Christie BR (1996) Endophytic bacteria of red clover as causal agents of allelopathic clover-maize syndromes. Soil Biol Biochem 28:583–588

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25(1):13–19

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19(1):1–30

    Article  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. Springer, New Delhi, pp 117–143

    Google Scholar 

  • Tien TM, Gaskins MH, Hubell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trevet IW, Hollis JP (1948) Bacteria in storage organs of healthy plants. Phytopathology 38:960–967

    Google Scholar 

  • Trognitz F, Piller K, Nagel M, Borner A, Bacher C-F, Rechlik M, Mayrhofer H, Sessitsch A (2014) Isolation and characterization of endophytes isolated from seeds of different plants and the application to increase juvenile development. In: Tagung Zukünftiges Saatgut—Produktion, Vermarktung, Nutzung und Konzervierung. Future Seed—Production, Marketing, Use and Conservation; 24–26 November 2014; Austria. Irdning: Höhere Bundeslehr- und Forschungsanstalt für Landwirtschaft Raumberg-Gumpenstein, pp 25–28

    Google Scholar 

  • Turner JT, Kelly JL, Carlson PS (1993) Endophytes: an alternative genome for crop improvement. Int Crop Sci:555–560

    Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ulloa WJ, Awaya JD, Bellinger MR, Shintaku M (2017) Isolation of mimosine-degrading endophytic bacteria from the invasive plant: Leucaena leucocephala. http://hdl.handle.net/10790/2950

  • Walker BH (1992) Biodiversity and ecological redundancy. Conserv Biol 6:18–23

    Article  Google Scholar 

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89:817–822

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Yuen GY (2000a) The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90:384–389

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yuen GY (2000b) Effects of culture fluids and preinduction of chitinase production on biocontrol of Bipolaris leaf spot by Stenotrophomonas maltophilia C3. Biol Control 18:277–286

    Article  Google Scholar 

  • Zhang Z, Yuen GY, Sarath G, Penheiter AR (2001) Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91:204–211

    Article  CAS  PubMed  Google Scholar 

  • Zimdahl RL (1980) Weed-crop competition: a review. International Plant Protection Center, Corvallis

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Science and Technology of the Government of Bangladesh, RMC of BSMRAU, World Bank, and Bangladesh Academy of Sciences for partial funding of this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatema, K., Mahmud, N.U., Islam, M.T. (2019). Beneficial Effects of Weed Endophytic Bacteria: Diversity and Potentials of Their Usage in Sustainable Agriculture. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_17

Download citation

Publish with us

Policies and ethics