Skip to main content

Structure-Activity Relationships

  • Chapter
  • First Online:
Introduction to Basics of Pharmacology and Toxicology

Abstract

In-depth analysis of the structure of the drug and its subsequent modification yield drugs with high affinity and increased receptor specificity with an improved pharmacokinetic profile. Modification of the parent molecule of catecholamines, called β-phenyl-ethyl-amine, provided orally active adrenergic bronchodilators, long-acting β2-adrenergic agonists, COMT-resistant catecholamines, and isomerism-based increased potency in adrenergic agonists. Similarly, alteration of the cyclo-pentano-perhydro-phenanthrene ring of steroid molecules delivered androgen, progestins, and estrogen with low first-pass metabolism, long-acting injectable steroids, and corticosteroids with negligible mineralocorticoid activity. In addition to this, manipulation of the structure of morphine resulted in a plethora of “opioid agonists and antagonists” that are used in clinics for various conditions. Minor alteration of “spacer” in the structure of antihistaminic molecules resulted in “nonsedative” antihistaminics. Therefore, SAR plays a vital role in the drug development process which ultimately determines the “success” or “failure” of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Phys 153:586–600

    Article  CAS  Google Scholar 

  • Barlow JJ, Main BG, Snow HM (1981) Beta-adrenoceptor stimulant properties of amidoalkylamino-substituted 1-aryl-2-ethanols and 1-(aryloxy)-2-propanols. J Med Chem 24:315–322

    Article  CAS  Google Scholar 

  • Belleau B (1967) Stereochemistry of adrenergic receptors: newer concepts on the molecular mechanism of action of catecholamines and antiadrenergic drugs at the receptor level. Ann N Y Acad Sci 139:580–605

    Article  CAS  Google Scholar 

  • Bentel JM, Birrell SN, Pickering MA, Holds DJ, Horsfall DJ, Tilley WD (1999) Androgen receptor agonist activity of the synthetic progestin, medroxyprogesterone acetate, in human breast cancer cells. Mol Cell Endocrinol 154:11–20

    Article  CAS  Google Scholar 

  • Breit A, Lagace M, Bouvier M (2004) Hetero-oligomerization between β2 and β3 receptors generates a β-adrenergic signaling unit with distinct functional properties. J Biol Chem 279:28756–28765

    Article  CAS  Google Scholar 

  • Bursi R, Groen MB (2000) Application of (quantitative) structure–activity relationships to progestagens: from serendipity to structure-based design. Eur J Med Chem 35:787–796

    Article  CAS  Google Scholar 

  • Casy AF, Huckstep MR (1988) Structure-activity studies of fentanyl. J Pharm Pharmacol 40:605–608

    Article  CAS  Google Scholar 

  • Chavkin C, Goldstein A (1981) Specific receptor for the opioid peptide dynorphin: structure–activity relationships. PNAS 78:6543–6547

    Article  CAS  Google Scholar 

  • Connor K, Ramamoorthy K, Moore M, Mustain M, Chen I, Safe S et al (1997) Hydroxylated polychlorinated biphenyls (PCBs) as estrogens and antiestrogens: structure–activity relationships. Toxicol Appl Pharmacol 145:111–123

    Article  CAS  Google Scholar 

  • Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W et al (2001) Structure−activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem Res Toxicol 14:280–294

    Article  CAS  Google Scholar 

  • Feinberg AP, Snyder SH (1975) Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine. PNAS 72:1899–1903

    Article  CAS  Google Scholar 

  • Hiipakka RA, Zhang H-Z, Dai W, Dai Q, Liao S (2002) Structure–activity relationships for inhibition of human 5α-reductases by polyphenols. Biochem Pharmacol 63:1165–1176

    Article  CAS  Google Scholar 

  • Jaszczyszyn A, Gąsiorowski K, Świątek P, Malinka W, Cieślik-Boczula K, Petrus J et al (2012) Chemical structure of phenothiazines and their biological activity. Pharmacol Rep 64:16–23

    Article  CAS  Google Scholar 

  • Johnson M (1998) Development of fluticasone propionate and comparison with other inhaled corticosteroids. J Allergy Clin Immunol 101:S434–S439

    Article  CAS  Google Scholar 

  • Joshi J, Dimri M, Ghosh S, Shrivastava N, Chakraborti R, Sehgal N et al (2015) Ligand and structure based models for the identification of Beta 2 adrenergic receptor antagonists. Curr Comput Aided Drug Des 11:222–236

    Article  CAS  Google Scholar 

  • Katz M, Gans EH (2008) Topical corticosteroids, structure-activity and the glucocorticoid receptor: discovery and development—a process of ‘“planned serendipity”’. J Pharm Sci 97:2936–2947

    Article  CAS  Google Scholar 

  • Kenny B, Miller A, Williamson I et al (1996) Evaluation of the pharmacological selectivity profile of α1 adrenoceptor antagonists at prostatic α1 adrenoceptors: binding, functional and in vivo studies. Br J Pharmacol 118:871–878

    Article  CAS  Google Scholar 

  • Mager DE, Jusko WJ (2002) Quantitative structure–pharmacokinetic/pharmacodynamic relationships of corticosteroids in man. J Pharm Sci 91:2441–2451

    Article  CAS  Google Scholar 

  • Marwah P, Marwah A, Lardy HA, Miyamoto H, Chang C (2006) C19-steroids as androgen receptor modulators: design, discovery, and structure-activity relationship of new steroidal androgen receptor antagonists. Bioorg Med Chem 14:5933–5947

    Article  CAS  Google Scholar 

  • McRobb L, Handelsman DJ, Kazlauskas R, Wilkinson S, McLeod MD, Heather AK (2008) Structure–activity relationships of synthetic progestins in a yeast-based in vitro androgen bioassay. J Steroid Biochem Mol Biol 110:39–47

    Article  CAS  Google Scholar 

  • Mosnaim AD, Ranade VV, Wolf ME, Puente J, Antonieta Valenzuela M (2006) Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am J Ther 13:261

    Article  Google Scholar 

  • Nauta WT, Rekker RF (1978) Structure-activity relationships of H1-receptor antagonists. In: Rocha e Silva M (ed) Histamine II and anti-Histaminics. Handbuch der experimentellen Pharmakologie/handbook of experimental pharmacology, vol 18/2. Springer, Berlin, pp 215–249

    Chapter  Google Scholar 

  • Paris J, Botella J, Fournau P, Bonnet P, Thevenot R (1987) Extinction of mineralocorticoid effects in 19-norprogesterone derivatives: structure-activity relationships. J Pharmacol Exp Ther 243:288–291

    CAS  PubMed  Google Scholar 

  • Patane MA, DiPardo RM, Price RP, Chang RS, Ransom RW, O’Malley SS et al (1998) Selective alpha-1a adrenergic receptor antagonists. Effects of pharmacophore regio- and stereochemistry on potency and selectivity. Bioorg Med Chem Lett 8:2495–2500

    Article  CAS  Google Scholar 

  • Patil PN, Jacobowitz D (1968) Steric aspects of adrenergic drugs. IX. Pharmacologic and histochemical studies on isomers of cobefrin (a-methylnorepinephrine). J Pharmacol Exp Ther 161:279–295

    CAS  PubMed  Google Scholar 

  • Phillipps GH (1990) Structure-activity relationships of topically active steroids: the selection of fluticasone propionate. Res Med 84:19–23

    Article  Google Scholar 

  • Robert D, Amat L, Carbó-Dorca R (1999) Three-dimensional quantitative structure−activity relationships from tuned molecular quantum similarity measures: prediction of the corticosteroid-binding globulin binding affinity for a steroid family. J Chem Inf Comput Sci 39:333–344

    Article  CAS  Google Scholar 

  • Rossi EC, Louis G, Zeller EA (1979) Structure activity relationships between catecholamines and the alpha-adrenergic receptor responsible for the aggregation of human platelets by epinephrine. J Lab Clin Med 93:286–294

    CAS  PubMed  Google Scholar 

  • Rozenbaum H (1982) Relationships between chemical structure and biological properties of progestogens. Am J Obstet Gynecol 142:719–724

    Article  CAS  Google Scholar 

  • Sączewski J, Hudson A, Scheinin M, Wasilewska A, Sączewski F, Rybczyńska A et al (2016) Transfer of SAR information from hypotensive indazole to indole derivatives acting at α-adrenergic receptors: in vitro and in vivo studies. Eur J Med Chem 115:406–415

    Article  Google Scholar 

  • Singh SM, Gauthier S, Labrie F (2000) Androgen receptor antagonists (antiandrogens) structure-activity relationships. Curr Med Chem 7:211–247

    Article  CAS  Google Scholar 

  • Stanczyk FZ (2003) All progestins are not created equal. Steroids 68:879–890

    Article  CAS  Google Scholar 

  • Stanley TH (1992) The history and development of the fentanyl series. J Pain Symptom Manag 7:S3–S7

    Article  CAS  Google Scholar 

  • Stauffer SR, Coletta CJ, Tedesco R, Nishiguchi G, Carlson K, Sun J et al (2000) Pyrazole ligands: structure−affinity/activity relationships and estrogen receptor-α-selective agonists. J Med Chem 43:4934–4947

    Article  CAS  Google Scholar 

  • Tong W, Lowis DR, Perkins R, Chen Y, Welsh WJ, Goddette DW et al (1998) Evaluation of quantitative structure−activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J Chem Inf Comput Sci 38:669–677

    Article  CAS  Google Scholar 

  • Vuckovic S, Prostran M, Ivanovic M, Dosen-Micovic L, Todorovic Z, Nesic Z et al (2009) Fentanyl analogs: structure-activity-relationship study. Curr Med Chem 16:2468–2474

    Article  CAS  Google Scholar 

  • Waller CL, Juma BW, Earl GJL, Kelce WR (1996) Three-dimensional quantitative structure–activity relationships for androgen receptor ligands. Toxicol Appl Pharmacol 137:219–227

    Article  CAS  Google Scholar 

  • Winneker RC, Fensome A, Wrobel JE, Zhang Z, Zhang P (2005) Nonsteroidal progesterone receptor modulators: structure activity relationships. Semin Reprod Med 23:46–57

    Article  CAS  Google Scholar 

  • Yang Y-R, Chiu T-H, Chen C-L (1999) Structure–activity relationships of naturally occurring and synthetic opioid tetrapeptides acting on locus coeruleus neurons. Eur J Pharmacol 372:229–236

    Article  CAS  Google Scholar 

  • Zhu BT, Han G-Z, Shim J-Y, Wen Y, Jiang X-R (2006) Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor α and β subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology 147:4132–4150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakshmanan, M. (2019). Structure-Activity Relationships. In: Raj, G., Raveendran, R. (eds) Introduction to Basics of Pharmacology and Toxicology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9779-1_13

Download citation

Publish with us

Policies and ethics