Skip to main content

Temperature-Dependent Analog, RF, and Linearity Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications

  • Conference paper
  • First Online:
Advances in VLSI, Communication, and Signal Processing

Abstract

In this paper, junctionless quadruple gate (JLQG) MOSFET is analyzed for its temperature-dependent characteristics. The junctionless MOSFET makes manufacturing simpler because it has no p-n junction as the doping of the channel is same as source/drain (S/D) region. Various performance parameters for short channel effects (SCEs), analog/RF, and linearity distortion of the JLQG MOSFET such as drain current (ID), transconductance (gm1), transconductance generation factor (TGF), output conductance (gd), early voltage (VEA), intrinsic gain (gm/gd), cut-off frequency (fT), gain frequency product (GFP), transconductance frequency product (TFP), gain trans-conductance frequency product (GTFP), second order derivative (gm2), third order derivative (gm3), second order voltage intercept point (VIP2), third order voltage intercept point (VIP3), third order input intercept point (IIP3), and third order intermodulation distortion (IMD3) with respect to temperature variations are presented and discussed. The study reveals the different zero-crossing points for temperature-dependent characteristics leading to guidelines for temperature-insensitive designs using JLQG MOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patterson, R.L., Dickman, J.E., Hammoud, A., Gerber, S.: Electronic components and circuits for extreme temperature environments. In: Proceedings of the IEEE Aerospace Conference, vol. 6, pp. 2543–2548 (2003)

    Google Scholar 

  2. Yu, B., Wang, H., Kim, H.-S., Xiang, Q., Lin, M.-R., Chang, L., Hu, C.: Proceedings of the International Symposium on VLSI Technology, Systems, and Applications, pp. 23–25 (2001)

    Google Scholar 

  3. Groeseneken, G., Colinge, J.P., Maes, H.E., Alderman, J.C., Holt, S.: Temperature dependence of threshold voltage in thin-film SOI MOSFETs. IEEE Electron Device Lett. 11(8), 329–331 (1990)

    Article  Google Scholar 

  4. Colinge, J.P.: Multi-gate SOI MOSFETs. Solid-State Electron. 48, 897–905 (2004)

    Article  Google Scholar 

  5. Colinge, J.P.: FinFETs and Other Multi-Gate Transistors. Springer, Berlin (2008)

    Google Scholar 

  6. Kumar, M.J., Orouji, A.A., Harshit, D.: New dual-material SG nanoscale MOSFET: analytical threshold-voltage model. IEEE Trans. Electron Devices 53, 920–923 (2006)

    Article  Google Scholar 

  7. Yu, B., Song, J., Yuan, Y., Lu, W.Y., Taur, Y.: A unified analytic drain-current model for multiple-gate MOSFETs. IEEE Trans. Electron Devices 55, 2157–2163 (2008)

    Article  Google Scholar 

  8. Chevillon, N., Sallese, J.M., Lallement, C., Pregaldiny, F., Madec, M., Sedlmeir, J., Aghassi, J.: Generalization of the concept of equivalent thickness and capacitances to multigate MOSFETs modeling. IEEE Trans. Electron Devices 59, 60–71 (2012)

    Article  Google Scholar 

  9. Lee, C.W., Yun, S.R.N., Yu, C.G., Park, J.T., Colinge, J.P.: Device design guidelines for nano-scale MuGFETs. Solid-State Electron. 51, 505–510 (2007)

    Article  Google Scholar 

  10. Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)

    Article  Google Scholar 

  11. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  12. Rawat, A.S., Gupta, S.K.: Potential modeling and performance analysis of junction-less quadruple gate MOSFETs for analog and RF applications. Microelectron. J. 66, 89–102 (2017)

    Article  Google Scholar 

  13. Gupta, S.K, Rawat, A.S., Verma, Y.K., Mishra, V.: Linearity Distortion Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications, pp. 1–9. Springer, Silicon (2018)

    Article  Google Scholar 

  14. Silvaco: ATLAS User’s Guide (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prateek Kishor Verma or Santosh Kumar Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, P.K., Rawat, A.S., Gupta, S.K. (2020). Temperature-Dependent Analog, RF, and Linearity Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications. In: Dutta, D., Kar, H., Kumar, C., Bhadauria, V. (eds) Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, vol 587. Springer, Singapore. https://doi.org/10.1007/978-981-32-9775-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9775-3_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9774-6

  • Online ISBN: 978-981-32-9775-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics