Skip to main content

Plant Growth-Promoting Microbes as Front-Runners for On-site Remediation of Organophosphate Pesticide Residues in Agriculture Soils

  • Chapter
  • First Online:
Phyto and Rhizo Remediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 9))

Abstract

Increasing population has led to increased demand of food supply which marks greater importance to the agriculture sector worldwide. Chemical pesticides applied with an intention to maximize agriculture productivity and crop yield are leaving high residues in the agricultural soils, influencing the soil health adversely. Plant growth-promoting microbes (PGPMs) are largely known to be applied for their role in enhancing plant growth, thereby becoming a favourable choice for developing the new age bioinoculants. Presently, many researchers are concentrating their efforts to explore the potential of PGPMs to fight this problem of chemical residue accumulation in soils. Employing PGPM for bioremediation process would provide dual benefits to agricultural fields.

In this chapter the focus would be on exploring the role of PGPMs to remediate widely applied organophosphate pesticides (OPPs) that belong to the group of second-generation pesticides. The chapter begins with details of OPP application worldwide and the toxicity issues raised by their usage. A consolidation of reports on pesticide-associated toxicity in humans/higher mammals and the possible route of accidental ingestion through consumption of pesticide-laden agriculture products is presented. The chapter also elaborates on the role of PGPMs in OPP bioremediation by means of employing different biomolecules and enzymes produced by them in response to pesticide stress. Further, the manuscript presents research reports on PGPM application for OPP remediation along with future scope of research in this field. The chapter presents an overall critical analysis on why PGPM-based residual pesticide remediation is the safest solution by far to minimize migration of toxic pesticide residues to the food chain and plug in the accidental ingestion risk of residual pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    Article  CAS  Google Scholar 

  • Agrawal A, Pandey RS, Sharma B (2010) Water pollution with special reference pesticide contamination in India. J of Water Res Protec 2:432–448

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ - Sci 26:1–20

    Article  Google Scholar 

  • Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208

    Article  CAS  Google Scholar 

  • Aislabie J, Lloyd-Jones G (1995) A review of bacterial degradation of pesticides. Aust J Soil Res 33:925–942

    Article  CAS  Google Scholar 

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47:563–570

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Alam MN, Chowdhury MAZ, Hossain MS, Rahman MM, Rahman MA, Gan SH, Khalil MI (2015) Detection of residual levels and associated health risk of seven pesticides in fresh Eggplant and Tomato samples from Narayanganj District, Bangladesh. J Chem:1–7

    Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:1–8

    Article  Google Scholar 

  • Arora NK (2018) Agriculture sustainability and food security. Environ Sustain 1(3):217–219

    Article  Google Scholar 

  • Arora PK, Bae H (2014) Integration of bioinformatics to biodegradation. Biol Proc Online 16:1–10

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413

    Article  Google Scholar 

  • Bansal OP (2011) Fate of pesticides in the environment. J Indian Chem Soc 88:1525–1532

    CAS  Google Scholar 

  • Barman M, Paul S, Choudhury AG, Roy P, Sen J (2017) Biofertilizer as prospective input for sustainable agriculture in India. Int J Curr Microbiol App Sci 6(11):1177–1186

    Article  Google Scholar 

  • Bates N, Campbell A (2008) Organophosphate insecticides. In: Handbook of poisoning in dogs cats. Wiley, New York, pp 199–204

    Google Scholar 

  • Berry DF, Boyd SA (1985) Decontamination of soil through enhanced formation of bound residues. Environ Sci Technol 19:1132–1133

    Article  CAS  Google Scholar 

  • Bhadbhade BJ, Sarnaik SS, Kanekar PP (2002) Biomineralization of an organophosphorus pesticide, monocrotophos, by soil bacteria. J Appl Microbiol 93:224–234

    Article  CAS  Google Scholar 

  • Bagyaraj DJ, Krishnaraj P, Khanuja SP (2000) Mineral phosphate solubilization: agronomic implications, mechanism and molecular genetics. Proc Indian Natl Sci Acad 66:68–69

    Google Scholar 

  • Bhan S, Behera UK (2014) Conservation agriculture in India – Problems, prospects and policy issues. Int Soil Water Conserv Res 2:1–12

    Article  Google Scholar 

  • Brar SK, Verma M, Surampalli RY, Mishra K (2006) Bioremediation of hazardous wastes—a review. Pract Period Hazard Toxic Waste Manage 10:59–72

    Article  CAS  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms – A review. Aust J Soil Res 44:379–406

    Article  Google Scholar 

  • Buvaneswari G, Thaenmozhi R, Nagasathya A, Thajuddin N, Kumar PD (2018) GC-MS and molecular analyses of monocrotophos biodegradation by selected bacterial isolates. Afr J Microbiol Res 12(3):52–61

    Article  CAS  Google Scholar 

  • Calderbank A (1989) The occurrence and significance of bound pesticide residues in soil. Rev Environ Contam Toxicol 108:71–103

    Article  CAS  Google Scholar 

  • Carringer RD, Weber JB, Monaco TJ (1975) Adsorption-Desorption of selected pesticides by organic matter and montmorillonite. J Agric Food Chem 23:568–572

    Article  CAS  Google Scholar 

  • Chen S, Liu C, Peng C et al (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain cladosporium cladosporioides Hu-01. PLoS One 7:1–12

    CAS  Google Scholar 

  • CPCB – Central pollution control board (2006) National Chemical Management Profile for India:1–248.

    Google Scholar 

  • de Pereira JM, Baretta D, Bini D, RLF V, EJBN C (2013) Relationships between microbial activity and soil physical and chemical properties in native and reforested Araucaria angustifolia forests in the state of São Paulo, Brazil. Rev Bras Ciência do Solo 37:572–586

    Article  CAS  Google Scholar 

  • De Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  Google Scholar 

  • Delgado A, Gomez J (2016) The soil physical, chemical and biological properties. in: principle of agronomy for sustainable agriculture. In: Villalobos FJ, Fereres E (eds) Principles of agronomy for sustainable agriculture. Springer, Cham, pp 15–27

    Chapter  Google Scholar 

  • Deng S, Chen Y, Wang D, Shi T, Wu X, MA X, Li X, Hua R, Tang X, Li QX (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp: G1. J Hazard Mater 297:17–24

    Article  CAS  Google Scholar 

  • Department of Fertilizers, Ministry of chemicals and fertilizers Government of India (2013) Indian Fertilizer Scenario 2013. http://fert.nic.in/sites/default/files/Indian%20Fertilizer%20SCENARIO-2014.pdf

  • Ee LA, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzym Microb Technol 37:487–496

    Article  CAS  Google Scholar 

  • Farahat TM, Shaheen HM, Sanad ZF, Frag NA (2016) Knowledge, attitudes, and practices of organophosphorus pesticide exposure among women affiliated to the Manshat Sultan Family Health Center (rural area) in Menoufia governorate: an intervention study. Menoufia Med J 29:115–120

    Article  Google Scholar 

  • FICCI (2016) Next generation Indian Agriculture – role of crop protection solutions. http://ficci.in/study-page.asp?spid=20744&sectorid=7

  • Filimon MN (2015) The effect of some insecticides on soil microorganisms based on enzymatic and bacteriological analyses. Rom Biotechnol Lett 20:10439–10447

    CAS  Google Scholar 

  • Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–14

    Article  CAS  Google Scholar 

  • Goel A, Aggarwal P (2007) Pesticide poisoning. Natl Med J India 20(4):182–191

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthi L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3. Biotech 5:355–377

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  Google Scholar 

  • Greenpeace (2015) Pesticides and our health a growing concern:1–56. http://www.greenpeace.org/india/en/

  • Gupta RC (2006) Classification and uses of organophosphates and carbamates. In: Toxicology of organophosphate and carbamate compounds. Academic, Burlington, pp 5–24

    Chapter  Google Scholar 

  • Gupta RC, Milatovic D (2012) Toxicity of organophosphates and carbamates. In: Marrs TC (ed) Mammalian toxicology of insecticides. RSC Press, Cambridge, pp 104–136

    Chapter  Google Scholar 

  • Gupta RC, Milatovic D, Gupta RC (2012) Organophosphates and carbamates

    Chapter  Google Scholar 

  • Horne I, Sutherland TD, Oakeshott JG, Russell RJ (2002a) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology 148:2687–2695

    Article  CAS  Google Scholar 

  • Horne I, Sutherland TD, Rebecca L, Harcourt RRJ, Oakeshott JG (2002b) Identification of an opd (Organophosphate Degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68(7):3371–3376

    Article  CAS  Google Scholar 

  • IBEF – Indian brand equity foundation (2018) Agriculture and allied industries:1–44. https://www.ibef.org/

  • Ishag AESA, Abdelbagi AO, Hammad AMA, Elshieikh EAE, Elsaid OE, Hur JH, Lang MD (2016) Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J Agric Food Chem 64:8491–8498

    Article  CAS  Google Scholar 

  • Iyer R, Iken B, Damania A (2013) A comparison of organophosphate degradation genes and bioremediation applications. Environ Microbiol Rep 5:787–798

    Article  CAS  Google Scholar 

  • Jain R, Garg V, Dangwal K, Lily MK (2013) Comparative purification and characterization of two distinct extracellular monocrotophos hydrolases secreted by penicillium aculeatum and fusarium pallidoroseum isolated from agricultural fields. Biosci Biotechnol Biochem 77:961–965

    Article  CAS  Google Scholar 

  • Jariyal M, Jindal V, Mandal K, Gupta VK, Singh B (2018) Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia. Ecotoxicol Environ Saf 159:310–316

    Article  CAS  Google Scholar 

  • Jeffries TC, Rayu S, Nielsen UN, Lai K, Ijaz A, Nazaries L, Singh BK (2018) Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Front Microbiol 9:1–12

    Article  CAS  Google Scholar 

  • Johnstone T, Nolan E (2016) Beyond Iron: non-classical biological functions of bacterial siderophores. HHS Public Access 44:1922–2013

    Google Scholar 

  • Kanekar PP, Bhadbhade BJ, Deshpande NM, Sarnaik SS (2004) Biodegradation of organophosphorus pesticides. Proc Indian Natl Sci Acad B70:57–70

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1–11

    Article  CAS  Google Scholar 

  • Ken Research (2013) India pesticides industry analysis to 2018. https://www.marketresearch.com/product/sample-7920494.pdf

  • Krishnaraj PU, Goldstein AH (2001) Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205:215–220

    Article  CAS  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review. Microbiol Res 207:41–52

    Article  CAS  Google Scholar 

  • Kumar S, Kaushik G, Villarreal-Chiu JF (2016) Scenario of organophosphate pollution and toxicity in India: a review. Environ Sci Pollut Res 23:9480–9491

    Article  CAS  Google Scholar 

  • Kumar S, Kaushik G, Dar MA, Nimesh S, Lopez-chuken UJ, Villarreal-chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28:190–208

    Article  Google Scholar 

  • Li R, Zheng J, Wang R, Song Y, Chen Q, Yang X, Li S, Xiang J (2010) Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater. Int Biodeterior Biodegrad 64:51–57

    Article  CAS  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    Article  CAS  Google Scholar 

  • Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health B 45:348–359

    Article  CAS  Google Scholar 

  • Malghani S, Chatterjee N, Hu X, Zejiao L (2009) Isolation and characterization of a profenofos degrading bacterium. J Environ Sci 21:1591–1597

    Article  CAS  Google Scholar 

  • Mazumdar K (2015) Bio-Fertilizer use in Indian Agriculture. P Indian J Res 6:377–381

    Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp b55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747

    Article  CAS  Google Scholar 

  • Müller J, Wiemken A, Aeschbacher R (1999) Trehalose metabolism in sugar sensing and plant development. Plant Sci 147:37–47

    Article  Google Scholar 

  • Munnecke DM (1976) Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32:7–13

    CAS  Google Scholar 

  • Murugan AV, Swarnam TP, Gnanasambandan S (2013) Status and effect of pesticide residues in soils under different land uses of Andaman Islands, India. Environ Monit Assess 185:8135–8145

    Article  CAS  Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:1–14

    Article  CAS  Google Scholar 

  • Neti N, Zakkula V (2013) Analysis of chlorpyrifos degradation by Kocuria sp. using GC and FTIR. Current Biotica 6:466–472

    Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  Google Scholar 

  • Ortiz-hernández ML, Sánchez-salinas E, Dantán-gonzález E, Castrejón-godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegrad – Life Sci:251–287

    Google Scholar 

  • Pakala SB, Gorla P, Pinjari AB, Krovidi RK, Baru R, Yanamandra M, Merric M, Siddavattam D (2007) Biodegradation of methyl parathion and p-nitrophenol: Evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73:1452–1462

    Article  CAS  Google Scholar 

  • Parmar HY, Chakraborty H (2016) Effect of siderophore on plant growth promotion. Int J Appl Pure Sci Agric 2:60–69

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Hertz-Picciotto Id I, Sass JB, Engel S et al (2018) Organophosphate exposures during pregnancy and child neurodevelopment: recommendations for essential policy reforms. PLoS Med:1–15. https://doi.org/10.1371/journal.pmed.1002671

    Article  Google Scholar 

  • Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-Phosphate: connecting plant metabolism and development. Front Plant Sci 2:1–6

    Article  CAS  Google Scholar 

  • Prieto Garcia F, Cortés Ascencio SY, Oyarzun JCG, Hernandez AC, Alavarado PV (2012) Pesticides: classification, uses and toxicity. Measures of exposure and genotoxic risks. J Res Environ Sci Toxicol 1:2315–5698

    Google Scholar 

  • Rabie GH (1995) Biodegradation of the organophosphorus insecticide monocrotophos by Penicillium corrylophylum. Zagazig J Pharmaco Sci 4(2):14–19

    CAS  Google Scholar 

  • Raju MN, Venkateswarlu K (2013) Impact of pesticides combination on soil microorganisms. J Microbiol Biotechnol 4(2):29–36

    Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  Google Scholar 

  • Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    Article  CAS  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of Iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Article  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  Google Scholar 

  • Sahoo B, Chaudhuri (2019) Screening of lindane degrading bacteria isolated from soil for their plant growth promoting attributes. Environ Sustain. https://doi.org/10.1007/s42398-019-00054-4

    Article  CAS  Google Scholar 

  • Sajeed Ali S, Vidhale NN (2013) Bacterial siderophore and their application : a review. Int J Curr Microbiol App Sci 2:303–312

    Google Scholar 

  • Sakata M (2005) Organophosphorus pesticides. In: Suzuki O, Watanabe K (eds) Drugs and poisons in humans. Springer, Berlin/Heidelberg, pp 535–544

    Chapter  Google Scholar 

  • Sandhya V, Ali SZ (2015) The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84:512–519. https://doi.org/10.1134/S0026261715040153

    Article  CAS  Google Scholar 

  • Santoro M (2015) Production of volatile organic compounds in PGPR. In: Handbook for Azospirillum: technical issues and protocols. Springer, Cham, pp 1–514

    Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50:250–256

    CAS  Google Scholar 

  • Shahgholi H, Ahangar AG (2014) Factors controlling degradation of pesticides in the soil environment : A review. Agric Sci Dev 3:273–278

    Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium Solubilisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol App Sci 3:622–629

    Google Scholar 

  • Sharma I (2017) PGPR: heart of soil and their role in soil fertility. In: Meena VS, Mishra PK, Bisht JK, Pattanayal A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 53–67

    Google Scholar 

  • Shi P (2016) Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3. 2nd Int Conf Adv Energy Resour Environ Eng Conf Ser Earth Environ Sci 59 012048 78:427–436.

    Google Scholar 

  • Shi P (2017) Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3. 2nd Int Conf Adv Energy Resour Environ Eng Conf Ser Earth Environ Sci 59 012048 78:427–436. https://doi.org/10.1088/1755-1315/5

    Article  Google Scholar 

  • Singh G, Khurana D (2009) Neurology of acute organophosphate poisoning. Neurol India 57:119

    Article  Google Scholar 

  • Singh S, Sharma N (2000) Neurological syndromes following organophosphate poisoning. Neurol India 48:308–313

    CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR) – Pseudomonas fluorescens and Bacillus subtilis : a review. Afr J Agric Res 9:1265–1277

    Google Scholar 

  • Smith SE, Jacobsen I, Gronlund M, Smith FA (2011) Roles of Arbuscular Mycorrhizas in Plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in Arbuscular Mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  Google Scholar 

  • Soltaninejad K, Shadnia S (2014) History of the use and epidemiology of organophosphorus poisoning. In: Balali-Mood M, Abdollahi M (eds) Basic and clinical toxicology of organophosphorus compounds. Springer, London, pp 25–35

    Chapter  Google Scholar 

  • Souza E, Chubatsu L, Huergo LF, Monteiro R, Camilios-neto D, Wassem R, Pederosa FO (2014) Use of nitrogen-fixing bacteria to improve agricultural productivity. BMC Proc 8(4):O23

    Article  Google Scholar 

  • Srinivasulu M (2017) Biodegradation of monocrotophos by bacteria isolated from soil. Afr J Biotechnol 16(9):408–417

    Article  CAS  Google Scholar 

  • Sun L, Liu H, Gao X, Chen W, Huang K, Zhang S (2018) Isolation of monocrotophos-degrading strain Sphingobium sp. YW16 and cloning of its TnopdA. Environ Sci Pollut Res 25:4942–4950

    Article  CAS  Google Scholar 

  • Sundari SK (2014) Impact of biotic, abiotic stressors: biotechnologies for alleviating plant stress. In: Miransari M (ed) Use of microbes for the alleviation of salt stress. Springer, New York, pp 87–120

    Chapter  Google Scholar 

  • Sundari SK, Kotiyal S (2016) Endurance to Stress: an insight into innate stress management mechanisms in plants. In: Bagyaraj DJ, Jamaluddin (eds) Microbes for plant stress management. New India Publishing Agency, New Delhi, pp 67–103

    Google Scholar 

  • Sundari SK, Mishra N (2013) Contribution of plant growth promoting microorganisms for sustainable agricultural and forestry management. In: Miransari M (ed) Soil microbiology and biotechnology. Studium Press LLC, Houston, pp 223–266

    Google Scholar 

  • Tahir HAS, Gu Q, Wu H, Raza W, Hanif A, Wu L, Colman MV, Gao X (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:1–11

    Article  Google Scholar 

  • Thompson TS, Treble RG, Magliocco A, Roettger JR, Eichhorst JC (1998) Case study: fatal poisoning by malathion. Forensci Sci Int 95:89–98

    Article  CAS  Google Scholar 

  • Uqab B, Mudasir S, Nazir R (2016) Review on bioremediation of pesticides. J Bioremed Biodeg 7:3–7

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq BA (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules 21:1–17

    Article  CAS  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:1–10

    Article  CAS  Google Scholar 

  • Vijaya Kumar S, Fareedullah M, Sudhakar Y, Venkateshwarelu B, Ashok KE (2010) Current review on organophosphorus poisoning. Arch Appl Sci Res 2:199–215

    Google Scholar 

  • Ware G W, Whitacre D M (2004) The pesticide book edition 5; https://books.google.co.in/books/about/The_pesticide_book.html?id=jQ9NAAAAYAAJ

    Google Scholar 

  • Wang S, Zhang C, Yan Y (2012) Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12. Biodegradation 23:107–116

    Article  CAS  Google Scholar 

  • Webster JPG, Bowles RG, Williams NT (1999) Estimating the economic benefits of alternative pesticide usage scenarios: wheat production in the United Kingdom. Crop Prot 18:83–89

    Article  Google Scholar 

  • WHO – World Health Organization (2008) Pesticides, 1–62. http://www.who.int/ceh

  • Yongliang Z, Lifang L, Yuanyuan F, Jianping G, Jianping F, Weibin J (2013) A review on the detoxification of organophosphorus compounds by microorganisms. Afr J Microbiol Res 7:2127–2134

    Article  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145

    Article  Google Scholar 

  • Zacharia TJ (2011) Identity, physical and chemical properties of pesticides. Pesticides in the Modern World - Trends in Pesticides Analysis 1873:1–18. https://doi.org/10.5772/17513

    Article  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zakj C, Dowd SE, Pare PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23:1097–1104

    Article  CAS  Google Scholar 

  • Zhigacheva IV, Fatkullina LD, Burlakova EB, Shugaev AG, Generozova IP, Fattakhov SG, Konovalov AI (2007) Effects of the organophosphorus plant growth regulator melaphen on structural characteristics of animal and plant membranes. Biochem Suppl Series A Membr Cell Biol 2(2):128–134

    Google Scholar 

Download references

Acknowledgement

We thankfully acknowledge the support of our institute (JIIT) for encouraging our academic and scientific endeavours. Our sincere thanks to the editor and publisher for providing us with an opportunity to present a critical overview on PGPM research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishna Sundari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sundari, S.K., Prakash, A., Yadav, P., Kumari, A. (2019). Plant Growth-Promoting Microbes as Front-Runners for On-site Remediation of Organophosphate Pesticide Residues in Agriculture Soils. In: Arora, N., Kumar, N. (eds) Phyto and Rhizo Remediation. Microorganisms for Sustainability, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-32-9664-0_11

Download citation

Publish with us

Policies and ethics