Skip to main content

Neurophysiologic Advance in Depressive Disorder

  • Chapter
  • First Online:
Depressive Disorders: Mechanisms, Measurement and Management

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1180))

Abstract

Enormous efforts for near half-century have harvested a plenty of understanding on major depressive disorder (MDD), although the underlying mechanisms are still elusive. The available antidepressants are far from satisfaction due to long-delay action (LDA) of antidepressant efficacy and low response rates in MDD patients. Notably, discovery of a single low-dose ketamine-producing rapid-onset and sustained antidepressant efficacy has inspired new research direction. These new studies have revealed ketamine’s NMDAR-dependent and NMDAR-independent mechanisms, most of which are well known to be the key bases of synaptic plasticity as well as learning and memory. In fact, animal models of MDD are all based on the principle of learning and memory, i.e., the change of a behavior, for which monoaminergic and glutamatergic systems are the major modulators and executors, respectively. Reconsidering MDD as an aberrant form of emotion-related learning and memory would endow us a clearer research direction for developing new techniques or ways to prevent, diagnose, and treat MDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah CG, Adams TG, Kelmendi B, Esterlis I, Sanacora G, Krystal JH (2016) Ketamine’s mechanism of action: a path to rapid-acting antidepressants. Depress Anxiety 33:689–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleksandrova LR, Phillips AG, Wang YT (2017) Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatr Neurosci 42:222–229

    Article  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Burgdorf J, Zhang X-L, Nicholson KL, Balster RL, Leander JD, Stanton PK, Gross AL, Kroes RA, Moskal JR (2013) GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 38:729–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J et al (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Chen NH, Xu TL, Xu L (2004) Stress-facilitated LTD induces output plasticity through a synchronized-spikes and spontaneous unitary discharges the CA1 region of the hippocampus. Neurosci Res 49:229–239

    Article  PubMed  Google Scholar 

  • Carrier N, Kabbaj M (2013) Sex differences in the antidepressant-like effects of ketamine. Neuropharmacology 70:27–34

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xu L, Zhou J, Lv J, Mao RR, Tian M, Zhou QX, Zhang XM, Shen Y, Jiang ZY et al (2010) The application of 5-methyl-1,3-benzenediol or derivatives thereof in the preparation of medicines and functional foods for treatment or prevention of depression. China Patent Number CN101742992A

    Google Scholar 

  • Chowdhury GMI, Zhang J, Thomas M, Banasr M, Ma X, Pittman B, Bristow L, Schaeffer E, Duman RS, Rothman DL et al (2017) Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects. Mol Psychiatry 22:120–126

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41

    Article  PubMed  Google Scholar 

  • Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Janicki-Deverts D, Miller GE (2007) Psychological stress and disease. JAMA 298:1685–1687

    Article  CAS  PubMed  Google Scholar 

  • Crum AJ, Salovey P, Achor S (2013) Rethinking stress: the role of mindsets in determining the stress response. J Personal Soc Psychol 104:716–733

    Article  PubMed  Google Scholar 

  • Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, Ma S, Sang K, Tang S, Li Y et al (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554:323–327

    Article  CAS  PubMed  Google Scholar 

  • Demirdas A, Naziroglu M, Ovey IS (2017) Duloxetine reduces oxidative stress, apoptosis, and Ca2+ entry through modulation of TRPM2 and TRPV1 channels in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol 54:4683–4695

    Article  CAS  PubMed  Google Scholar 

  • Denk MC, Rewerts C, Holsboer F, Erhardt-Lehmann A, Turck CW (2011) Monitoring ketamine treatment response in a depressed patient via peripheral Mammalian target of rapamycin activation. Am J Psychiatry 168:751–752

    Article  PubMed  Google Scholar 

  • Dillon DG, Pizzagalli DA (2018) Mechanisms of memory disruption in depression. Trends Neurosci 41:137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan TT, Tan JW, Yuan Q, Cao J, Zhou QX, Xu L (2013) Acute ketamine induces hippocampal synaptic depression and spatial memory impairment through dopamine D1/D5 receptors. Psychopharmacology 228:451–461

    Article  CAS  PubMed  Google Scholar 

  • Dudai Y (1996) Consolidation: fragility on the road to the engram. Neuron 17:367–370

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duman RS, Li N, Liu R-J, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35–41

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK, Sanacora G, Krysta JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, Ionescu DF, Mathew SJ, Chang LC, Iosifescu DV et al (2018) Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry

    Google Scholar 

  • Franceschelli A, Sens J, Herchick S, Thelen C, Pitychoutis PM (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naive and “depressed’’ mice exposed to chronic mild stress. Neuroscience 290:49–60

    Article  CAS  PubMed  Google Scholar 

  • Freudenberg F, Celikel T, Reif A (2015) The role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav R 52:193–206

    Article  CAS  Google Scholar 

  • Gideons ES, Kavalali ET, Monteggia LM (2014) Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA 111:8649–8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gotlib IH, Joormann J (2010) Cognition and depression: current status and future directions. Annu Rev Clin Psychol 6:285–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammen C (2005). Stress and depression. Annu Rev Clin Psychol 293–319

    Article  PubMed  Google Scholar 

  • Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, Koehl M, Abrous DN, Mendizabal-Zubiaga J, Grandes P et al (2012) Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 148:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2016) R-ketamine: a rapid-onset and sustained antidepressant without risk of brain toxicity. Psychol Med 46:2449–2451

    Article  CAS  PubMed  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex Interneurons and pyramidal neurons. J Neurosci 27:11496–11500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing L, Duan TT, Tian M, Yuan Q, Tan JW, Zhu YY, Ding ZY, Cao J, Yang YX, Zhang X et al (2015) Despair-associated memory requires a slow-onset CA1 long-term potentiation with unique underlying mechanisms. Sci Rep 5

    Google Scholar 

  • Juruena MF, Baes CV, Menezes IC, Graeff FG (2015) Early life stress in depressive patients: role of glucocorticoid and mineralocorticoid receptors and of hypothalamic-pituitary-adrenal axis activity. Curr Pharm Des 21:1369–1378

    Article  CAS  PubMed  Google Scholar 

  • Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, Lepack A, Majik MS, Jeong LS, Banasr M et al (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 18:1413–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasawa J, Shimazaki T, Kawashima N, Chaki S (2005) AMPA receptor stimulation mediates the antidepressant-like effect of a group II metabotropic glutamate receptor antagonist. Brain Res 1042:92–98

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Foy MR, Thompson RF (1996) Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc Natl Acad Sci USA 93:4750–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto T, Chawla JM, Hagi K, Zarate CA, Kane JM, Bauer M, Correll CU (2016) Single-dose infusion ketamine and non-ketamine N-methyl-D-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol Med 46:1459–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike H, Chaki S (2014) Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res 271:111–115

    Article  CAS  PubMed  Google Scholar 

  • Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N, Kelmendi B, Simen A, McMahon FJ, Sanacora G et al (2012) Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry 72:E27–E28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2015) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychoph 18

    Article  PubMed Central  CAS  Google Scholar 

  • Levin R, Dor-Abarbanel AE, Edelman S, Durrant AR, Hashimoto K, Javitt DC, Heresco-Levy U (2015) Behavioral and cognitive effects of the N-methyl-D-aspartate receptor co-agonist D-serine in healthy humans: initial findings. J Psychiatr Res 61:188–195

    Article  PubMed  Google Scholar 

  • Li NX, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Piriz J, Mirrione M, Chung CH, Proulx CD, Schulz D, Henn F, Malinow R (2011a). Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470:535–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, Li X-Y, Aghajanian G, Duman RS (2011b) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HB, Mao RR, Zhang JC, Cao YJ, Xu L (2008) Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol Psychiatry 64:286–292

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Zeng YC, Lei XL (2016) Effects of electron-impurity scattering on density of states in silicene: impurity bands and band-gap narrowing. Phys Rev B 94

    Google Scholar 

  • Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK (2012) Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 71:996–1005

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Ge TT, Leng YS, Pan ZX, Fan JE, Yang W, Cui RJ (2017) The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast 11

    Google Scholar 

  • Liu LD, Wong TP, Pozza MF, Lingenhoehl K, Wang YS, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • MacQueen GM, Yucel K, Taylor VH, Macdonald K, Joffe R (2008) Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry 64:880–883

    Article  PubMed  Google Scholar 

  • Madasu MK, Roche M, Finn DP (2015) Supraspinal transient receptor potential subfamily V member 1 (TRPV1) in pain and psychiatric disorders. Mod Trends Pharmacopsychiatry 30:80–93

    Article  PubMed  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547

    Article  CAS  PubMed  Google Scholar 

  • Manna SSS, Umathe SN (2012) A possible participation of transient receptor potential vanilloid type 1 channels in the antidepressant effect of fluoxetine. Eur J Pharmacol 685:81–90

    Article  CAS  PubMed  Google Scholar 

  • Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, Hall BJ (2014) GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. eLife 3:e03581

    Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrough JW, Abdallah CG, Mathew SJ (2017) Targeting glutamate signalling in depression: progress and prospects. Nat Rev Drug Discovery 16:472–486

    Article  CAS  PubMed  Google Scholar 

  • Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A et al (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511:348-+ 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nations KR, Dogterom P, Bursi R, Schipper J, Greenwald S, Zraket D, Gertsik L, Johnstone J, Lee A, Pande Y et al (2012) Examination of Org 26576, an AMPA receptor positive allosteric modulator, in patients diagnosed with major depressive disorder: an exploratory, randomized, double-blind, placebo-controlled trial. J Psychopharmacol 26:1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, Novel APACRTF (2015) Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 172:950–966

    Article  PubMed  Google Scholar 

  • Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33:6990–7002

    Article  CAS  PubMed  Google Scholar 

  • Paul RK, Singh NS, Khadeer M, Moaddel R, Sanghvi M, Green CE, O’Loughlin K, Torjman MC, Bernier M, Wainer IW (2014) (R, S)-Ketamine metabolites (R, S)-norketamine and (2S, 6S)-hydroxynorketamine increase the mammalian target of rapamycin function. Anesthesiology 121:149–159

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Li MX, Xu C, Chen HB, An SC, Ma XM (2016) Dendritic spines in depression: what we learned from animal models. Neural Plast 26

    Google Scholar 

  • Radley JJ, Kabbaj M, Jacobson L, Heydendael W, Yehuda R, Herman JP (2011) Stress risk factors and stress-related pathology: neuroplasticity, epigenetics and endophenotypes. Stress 14:481–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes-Mendez ME, Castro-Sanchez LA, Dagnino-Acosta A, Aguilar-Martinez I, Perez-Burgos A, Vazquez-Jimenez C, Moreno-Galindo EG, Alvarez-Cervera FJ, Gongora-Alfaro JL, Navarro-Polanco RA et al (2018) Capsaicin produces antidepressant-like effects in the forced swimming test and enhances the response of a sub-effective dose of amitriptyline in rats. Physiol Behav 195:158–166

    Article  CAS  PubMed  Google Scholar 

  • Richter-Levin G, Xu L (2018) How could stress lead to major depressive disorder? IBRO Rep 4:38–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowan MJ, Anwyl R, Xu L (1998) Stress and long-term synaptic depression. Mol Psychiatry 3:472–474

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ (2017) Memory’s intricate web. Sci Am 317:30–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone JM, Dietrich C, Edden R, Mehta MA, De Simoni S, Reed LJ, Krystal JH, Nutt D, Barker GJ (2012) Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry 17:664–665

    Article  CAS  PubMed  Google Scholar 

  • Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Jing L, Toledo-Salas JC, Xu L (2015) Rapid-onset antidepressant efficacy of glutamatergic system modulators: the neural plasticity hypothesis of depression. Neurosci Bull 31:75–86

    Article  PubMed  CAS  Google Scholar 

  • Wang MN, Yang Y, Dong ZF, Cao J, Xu L (2006) NR2B-containing N-methyl-D-aspartate subtype glutamate receptors regulate the acute stress effect on hippocampal long-term potentiation/long-term depression in vivo. Neuro Rep 17:1343–1346

    CAS  Google Scholar 

  • Wang QH, Liu LD, Pei L, Ju W, Ahmadian G, Lu J, Wang YS, Liu F, Wang YT (2003) Control of synaptic strength, a novel function of Akt. Neuron 38:915–928

    Article  CAS  PubMed  Google Scholar 

  • Wieber J, Gugler R, Hengstmann JH, Dengler HJ (1975) Pharmacokinetics of ketamine in man. Anaesthesist 24:260–263

    Google Scholar 

  • Xiong WY, Yang YX, Cao J, Wei HM, Liang CL, Yang SC, Xu L (2003) The stress experience dependent long-term depression disassociated with stress effect on spatial memory task. Neurosci Res 46:415–421

    Article  PubMed  Google Scholar 

  • Xiong WY, Wei HM, Xiang XJ, Cao J, Dong ZF, Wang YF, Xu TL, Xu L (2004) The effect of acute stress on LTP and LTD induction in the hippocampal CA1 region of anesthetized rats at three different ages. Brain Res 1005:187–192

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Anwyl R, Rowan MJ (1997) Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387:497–500

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Holscher C, Anwyl R, Rowan MJ (1998) Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc Natl Acad Sci USA 95:3204–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CH, Huang CC, Hsu KS (2004a) Behavioral stress modifies hippocampal synaptic plasticity through corticosterone-induced sustained extracellular signal-regulated kinase/mitogen-activated protein kinase activation. J Neurosci 24:11029–11034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zheng XG, Wang YF, Cao J, Dong ZF, Cai JX, Sui N, Xu L (2004b) Stress enables synaptic depression in CA1 synapses by acute and chronic morphine: possible mechanisms for corticosterone on opiate addiction. J Neurosci 24:2412–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Zhou ZQ, Gao ZQ, Shi JY, Yang JJ (2013) Acute increases in plasma Mammalian target of rapamycin, glycogen synthase kinase-3 beta, and eukaryotic elongation factor 2 phosphorylation after ketamine treatment in three depressed patients. Biol Psychiatry 73:E35–E36

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Hou CL, Ma N, Liu J, Zhang Y, Zhou JS, Xu L, Li LJ (2007) Enriched environment treatment restores impaired hippocampal synaptic plasticity and cognitive deficits induced by prenatal chronic stress. Neurobiol Learn Mem 87:257–263

    Article  PubMed  Google Scholar 

  • Yang Y, Cui YH, Sang KN, Dong YY, Ni ZY, Ma SS, Hu HL (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554:317–322

    Article  CAS  PubMed  Google Scholar 

  • Yao N, Skiteva O, Zhang X, Svenningsson P, Chergui K (2017) Ketamine and its metabolite (2R, 6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol Psychiatry

    Google Scholar 

  • Zanos P (2017) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Eur Neuropsychopharm 27:S528–S528

    Article  Google Scholar 

  • Zanos P, Gould TD (2018) Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 23:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan PX, Pribut HJ, Singh NS et al (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481-+

    Google Scholar 

  • Zarate CA, Brutsche N, Laje G, Luckenbaugh DA, Venkata SLV, Ramamoorthy A, Moaddel R, Wainer IW (2012a) Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry 72:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate CA, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA (2012b) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71:939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiat 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mao RR, Chen ZF, Tian M, Tong DL, Gao ZR, Huang M, Li X, Xu X, Zhou WH et al (2014). Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders. Mol Brain 7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 29:419–423

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Xiong GJ, Jing L, Song NN, Pu DL, Tang X, He XB, Xu FQ, Huang JF, Li LJ et al (2017) The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nat Commun 8:2190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, L., Mao, R. (2019). Neurophysiologic Advance in Depressive Disorder. In: Fang, Y. (eds) Depressive Disorders: Mechanisms, Measurement and Management. Advances in Experimental Medicine and Biology, vol 1180. Springer, Singapore. https://doi.org/10.1007/978-981-32-9271-0_5

Download citation

Publish with us

Policies and ethics