Skip to main content

Literature Review Fatigue Analysis in Trabecular Bone

  • Chapter
  • First Online:
Multi-axial Fatigue of Trabecular Bone with Respect to Normal Walking

Abstract

Normal walking is the most action impose on the skeleton structure. The microarchitecture of trabecular bone plays an important role respect to mechanical properties. Analyse the fatigue behaviour of the trabecular bone respect to physiological activity (Normal Walking), subjected to combination of axial compression and torsional (multi-axial) load counted as the main aim of this study. The osteoclast is responsible for modelling and remodelling of bone and is defined as a large multinucleate bone cell that absorbs bone tissue during growth and healing. Irregularities and disorders in trabecular bone cause to reduction of bone mass and its architecture. The standard method applied to extract bone structures properties is 2D section of bone biopsies. Tetrahedrons technique is applied to calculate bone volume (BV), total volume (TV) is the volume of whole bone structures. Trabecular bone has a significant portion in respect of resisting compression and shear. Data extracted from experimental test is depends on many parameters such as geometry of bone and measurement of strain. Trabecular architecture has a specific properties respect to tension loading. Almost all load due to physiological activates are counted as cyclic loading. Lifetimes were found to be highly dependent on the axis of loading and are drastically reduced for off-axis loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dendorfer, S., Maier, H. J., & Hammer, J. (2009). Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale. Journal of the Mechanical Behavior of Biomedical Materials, 2(1), 113–119.

    Article  Google Scholar 

  2. Bauer, J. S., et al. (2007). Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcified Tissue International, 80(6), 366–373.

    Article  Google Scholar 

  3. Carter, D. R., et al. (1981). Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. Journal of Biomechanics, 14(7), 461–470.

    Article  Google Scholar 

  4. George, W. T., & Vashishth, D. (2006). Susceptibility of aging human bone to mixed-mode fracture increases bone fragility. Bone, 38(1), 105–111.

    Article  Google Scholar 

  5. O’Brien, F. J., Taylor, D., & Lee, T. C. (2003). Microcrack accumulation at different intervals during fatigue testing of compact bone. Journal of Biomechanics, 36(7), 973–980.

    Article  Google Scholar 

  6. Yeni, Y. N., et al. (2009). Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties. Bone, 44(1), 130–136.

    Article  Google Scholar 

  7. Moore, T. L. A., O’Brien, F. J., & Gibson, L. J. (2004). Creep does not contribute to fatigue in bovine trabecular bone. Journal of Biomechanical Engineering, 126(3), 321–329.

    Article  Google Scholar 

  8. Whitehouse, W., & Dyson, E. (1974). Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. Journal of Anatomy, 118(Pt 3), 417.

    Google Scholar 

  9. Bevill, G., Farhamand, F., & Keaveny, T. M. (2009). Heterogeneity of yield strain in low-density versus high-density human trabecular bone. Journal of Biomechanics, 42(13), 2165–2170.

    Article  Google Scholar 

  10. Kadir, M. R., Syahrom, A., & Ochsner, A. (2010). Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone. Medical and Biological Engineering and Computing, 48(5), 497–505.

    Article  Google Scholar 

  11. Tor Hildebrand, A. L., 1 Ralph mü, L., 2 Jan D., & 3 Peter Rü E.1. (1999). Direct three-dimensional morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and calcaneus. Journal of Boneand Mineral Research, 14.

    Google Scholar 

  12. Sudheer Reddy, M. D., & Soslowsky, L. J. (2009). Biomechanics—Part I. Berlin: Springer. doi:10.1007/978-1-59745-347-9_3.

    Google Scholar 

  13. Brown, T. D., & Ferguson A. B. Jr. (1980). Mechanical Property Distributions in the Cancellous Bone of the Human Proximal Femur (Vol. 51). London: Informa Healthcare.

    Google Scholar 

  14. Taylor, M. J. C. & Zioupos, P. (2002) Finite element simulation of the fatigue behaviour of cancellous bone (Vol. 37, p. 419). Springer link.

    Google Scholar 

  15. Linde, F., Hvid, I., & Madsen, F. (1992). The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. Journal of Biomechanics, 25(4), 359–368.

    Article  Google Scholar 

  16. Keaveny, T. M., et al. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4), 599–607.

    Article  Google Scholar 

  17. Verhulp, E., et al. (2008). Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. Journal of Biomechanics, 41(7), 1479–1485.

    Article  Google Scholar 

  18. Kelly, N., & McGarry, J. P. (2012). Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. Journal of the Mechanical Behavior of Biomedical Materials, 9, 184–197.

    Article  Google Scholar 

  19. Bayraktar, H. H., et al. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27–35.

    Article  Google Scholar 

  20. Kasra, M., & Grynpas, M. D. (2007). On shear properties of trabecular bone under torsional loading: effects of bone marrow and strain rate. Journal of Biomechanics, 40(13), 2898–2903.

    Article  Google Scholar 

  21. Fyhrie, D. P., & Vashishth, D. (2000). Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone, 26(2), 169–173.

    Article  Google Scholar 

  22. Follet, H., et al. (2005). Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography. Bone, 36(2), 340–351.

    Article  Google Scholar 

  23. Garrison, J. G., Gargac, J. A., & Niebur, G. L. (2011). Shear strength and toughness of trabecular bone are more sensitive to density than damage. Journal of Biomechanics, 44(16), 2747–2754.

    Article  Google Scholar 

  24. Ashman, R. B., Corin, J. D., & Turner, C. H. (1987). Elastic properties of cancellous bone: Measurement by an ultrasonic technique. Journal of Biomechanics, 20(10), 979–986.

    Article  Google Scholar 

  25. Linde, F., et al. (1991). Mechanical properties of trabecular bone. Dependency on strain rate. Journal of Biomechanics, 24(9), 803–809.

    Article  Google Scholar 

  26. Harrigan, T. P., et al. (1988). Limitations of the continuum assumption in cancellous bone. Journal of Biomechanics, 21(4), 269–275.

    Article  Google Scholar 

  27. Kasra, M., & Grynpas, M. D. (1998). Static and dynamic finite element analyses of an idealized structural model of vertebral trabecular bone. Journal of Biomechanical Engineering, 120(2), 267–272.

    Article  Google Scholar 

  28. Nadai, A. (1950). Torsion of a round bar. The stress–strain curve in shear. In theory of flow and fracture of solids.

    Google Scholar 

  29. Gibson, L. J. (1985). The mechanical behaviour of cancellous bone. Journal of Biomechanics, 18(5), 317–328.

    Article  Google Scholar 

  30. Bayraktar, H. H., & Keaveny, T. M. (2004). Mechanisms of uniformity of yield strains for trabecular bone. Journal of Biomechanics, 37(11), 1671–1678.

    Article  Google Scholar 

  31. Shi, X., Wang, X., & Niebur, G. (2009). Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Annals of Biomedical Engineering, 37(2), 354–362.

    Article  Google Scholar 

  32. Burr, D. B., et al. (1997). Bone microdamage and skeletal fragility in osteoporotic and stress fractures. Journal of Bone and Mineral Research, 12(1), 6–15.

    Article  Google Scholar 

  33. Taylor, M., Cotton, J., & Zioupos, P. (2002). Finite element simulation of the fatigue behaviour of cancellous bone*. Meccanica, 37(4–5), 419–429.

    Article  MATH  Google Scholar 

  34. Moore, T. L. A., & Gibson, L. J. (2004). Fatigue of bovine trabecular bone. Journal of Biomechanical Engineering, 125(6), 761–768.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mostakhdemin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Mostakhdemin, M., Sadegh Amiri, I., Syahrom, A. (2016). Literature Review Fatigue Analysis in Trabecular Bone. In: Multi-axial Fatigue of Trabecular Bone with Respect to Normal Walking. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-287-621-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-621-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-620-1

  • Online ISBN: 978-981-287-621-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics