Skip to main content

Enhanced Flood Forecasting Based on Land-Use Change Model and Radar-Based Quantitative Precipitation Estimation

  • Conference paper
ISFRAM 2014

Abstract

For a country located in the equatorial region, flooding in the event of heavy rain is something that is inevitable. Malaysia is located in the equatorial region and experiences tropical climate. Kuala Lumpur, the capital city of Malaysia located in the Klang River Basin, is prone to flooding in the event of heavy rains in the catchment. Therefore, flood forecasting is a necessity, as the system helps in planning for flood events and helps to prevent loss of lives and minimise damages. Increased development in Klang Valley has resulted in the need of commercial space and housing demand in the Klang Valley. Therefore, many new areas have been developed for commercial land residential purposes. This has resulted in significant changes in land use due to the development since the past 10 years. The overall objective of the study is to enhance flood forecasting system for the provision of flood warning and emergency response with a convenient lead time. Expected outputs from the study are the incorporation of the effects of land-use change in flood model development and enhancement of the flood forecasting by using radar-based quantitative precipitation estimation (QPE).

The authors would like to thank Research Management Institute, Universiti Teknologi Mara, ERGS grants 600-RMI/ERGS 5/3 (21/2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Department of Irrigation and Drainage, 2005–2006 Annual Report. Ministry of Natural Resources and Environment, Malaysia, 2007. ISBN 1823-6277

    Google Scholar 

  2. Department of Irrigation and Drainage, National Register of River Basin Study, 2003

    Google Scholar 

  3. J. Warren Viessman, G.L. Lewis, Introduction to Hydrology, 4th edn. (HarperCollins College Publishers, New York, 1996)

    Google Scholar 

  4. R.C. Ward, M. Robinson, in Principle of Hydrology, 4th edn., ed. by E. Robinson (Alfred Waller, Glasgow, 2000)

    Google Scholar 

  5. M.M.N. Desa, J. Niemczynowicz, Spatial variability of rainfall in Kuala Lumpur, Malaysia: Long and short term characteristics spatial variability of rainfall in Kuala Lumpur, Malaysia. Hydrol. Sci. J. 41(3), 345–362 (1996)

    Article  Google Scholar 

  6. K.S. Sow, L. Juneng, F.T. Tangang, A.G. Hussin, M. Mahmud, Numerical simulation of a severe late afternoon thunderstorm over Peninsular Malaysia. Atmos. Res. 99(2), 248–262 (2011). doi:10.1016/j.atmosres.2010.10.014

    Article  Google Scholar 

  7. C.L. Wong, R. Venneker, S. Uhlenbrook, Variability of rainfall in Peninsular Malaysia. Hydrol. Earth Syst. Sci. Discuss. 6(4), 5471–5503 (2009). doi:10.5194/hessd-6-5471-2009

    Article  Google Scholar 

  8. S. Jamaludin, A.A. Jemain, Fitting daily rainfall amount Malaysia. J. Appl. Sci. 7(14), 1880–1886 (2007)

    Article  Google Scholar 

  9. T. Wardah, R. Suzana, S.Y. Huda, Multi-sensor data inputs rainfall estimation for flood simulation and forecasting, in 2012 I.E. Colloquium on Humanities, Science and Engineering (CHUSER), 2012, pp. 374–379

    Google Scholar 

  10. A. Akbari, F. Othman, A. Abu Samah, Probing on suitability of TRMM data to explain spatio-temporal pattern of severe storms in tropic region. Hydrol. Earth Syst. Sci. Discuss. 8(5), 9435–9468 (2011). doi:10.5194/hessd-8-9435-2011

    Article  Google Scholar 

  11. C. Ludlow, J. Peterson, G. Smith, Stormwater Management and Road Tunnel (SMART) Project, Functional Specification—FDS Modelling System, 2008

    Google Scholar 

  12. Setia Sepakat Perunding, SMART Tunnel: Designer’s Operation and Maintenance Manual, 2008

    Google Scholar 

  13. K. Abdullah, in Kuala Lumpur: Re-engineering a Flooded Confluence. Fourteenth Professor Chin Fung Kee Memorial Lecture, Kuala Lumpur, 2 Oct 2004

    Google Scholar 

  14. R. Suzana, T. Wardah, Radar hydrology: New Z/R relationships for quantitative precipitation estimation in Klang River Basin, Malaysia. Int. J. Environ. Sci. Dev. 2(3), 248–251 (2011)

    Google Scholar 

  15. T. Wardah, C. Hamid, H. Aimme, Flood forecasting using tank model and weather surveillance radar (WSR) input for Sg Gombak catchment. Int. J. Civ. Environ. Eng. 13(2), 42–46 (2013)

    Google Scholar 

  16. T. Wardah, S.H. Abu Bakar, A. Bardossy, M. Maznorizan, Use of geostationary meteorological satellite images in convective rain estimation for flash-flood forecasting. J. Hydrol. 356(3), 283–298 (2008)

    Article  Google Scholar 

  17. T. Wardah, I. Zaidah, R. Suzana, Geostationary meteorological satellite-based quantitative rainfall estimation (GMS-Rain) for flood forecasting. Malays. J. Civ. Eng. 21(1), 1–16 (2009)

    Article  Google Scholar 

  18. T. Wardah, S.H. Abu Bakar, M. Mohamad, Intense convective rain estimation using geostationary meteorological satellite, in Advances in Geosciences, Volume 11: Hydrological Science (HS), vol. 11 (2009), pp. 133–147

    Google Scholar 

  19. K. Nagata, Quantitative Precipitation Estimation and Quantitative Precipitation Forecasting by the Japan Meteorological Agency. Technical review no. 13, RMSC Tokyo—Typhoon Center (2011), pp. 37–50

    Google Scholar 

  20. T. Wardah, S.Y. Sharifah Nurul Huda, S.M. Deni, B. Azwa, Radar rainfall estimates comparison with kriging interpolation of gauged rain, in Colloquium on Humanities, Science and Engineering, CHUSER 2011, 2011, art. no. 6163877, pp. 93–97

    Google Scholar 

  21. T. Wardah, S.Y. Sharifah Nurul Huda, R. Suzana, A. Hamzah, W.W.I. Maisarah, WRF model input for improved radar rainfall estimates using Kalman filter, in 2014 International Symposium on Technology Management and Emerging Technologies (ISTMET), IEEE, 2014, pp. 322–327

    Google Scholar 

  22. R. Suzana, T. Wardah, A.S. Hamid, Radar hydrology: New Z/R relationships for Klang River Basin Malaysia based on rainfall classification. World Acad. Sci. Eng. Technol. 59 (2011), pp. 248–251

    Google Scholar 

  23. R. Suzana, T. Wardah, Radar hydrology: New Z/R relationships for Klang River Basin, Malaysia, in International Conference on Environment Science and Engineering, IPCBEE, vol. 8 (IACSIT Press, Singapore, 2011)

    Google Scholar 

  24. S.N.H.S. Yahya, W. Tahir, S. Ramli, S.M. Deni, H. Arof, M.F.M. Saaid, Improved estimation of radar rainfall bias over Klang River Basin using a Kalman filtering approach, in 2012 I.E. Symposium on Business, Engineering and Industrial Applications (ISBEIA), IEEE, September 2012, pp. 368–373

    Google Scholar 

  25. R.E. Rinehart, Radar for Meteorologists (Rinehart Publications, Grand Forks, ND, 1997)

    Google Scholar 

  26. K. Subramaniam, L.K. Ling, W.A. Wan Hassan, Variational data assimilation of Doppler radar reflectivity data into WRFV3.2, 2013

    Google Scholar 

  27. D. Rosenfeld, D.B. Wolff, E. Amital, The window probability matching method for rainfall measurements with radar. J. Appl. Meteorol. 33, 682–693 (1994)

    Article  Google Scholar 

  28. X. Sun, R.G. Mein, T.D. Keenan, J.F. Elliott, Flood estimation using radar and raingauge data. J. Hydrol. 239(1–4), 4–18 (2000). doi:10.1016/S0022-1694(00)00350-4

    Article  Google Scholar 

  29. J.A. Smith, M.L. Baeck, K.L. Meierdiercks, A.J. Miller, W.F. Krajewski, Radar rainfall estimation for flash flood forecasting in small urban watersheds. Adv. Water Resour. 30(10), 2087–2097 (2007). doi:10.1016/j.advwatres.2006.09.007

    Article  Google Scholar 

  30. C. McColl, G. Aggett, Land-use forecasting and hydrologic model integration for improved land-use decision support. J. Environ. Manag. 84(4), 494–512 (2007). doi:10.1016/j.jenvman.2006.06.023

    Article  Google Scholar 

  31. P.H. Verburg, W. Soepboer, A. Veldkamp, R. Limpiada, V. Espaldon, S.S.A. Mastura, Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 30(3), 391–405 (2002). doi:10.1007/s00267-002-2630-x

    Article  Google Scholar 

  32. D. Guan, H. Li, T. Inohae, W. Su, T. Nagaie, K. Hokao, Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 222(20–22), 3761–3772 (2011). doi:10.1016/j.ecolmodel.2011.09.009

    Article  Google Scholar 

  33. X. Li, A.G.-O. Yeh, Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf. Sci. 16(4), 323–343 (2002). doi:10.1080/13658810210137004

    Article  Google Scholar 

  34. X. Xu, J. Zhang, X. Zhou, Modeling urban land use changes in Lanzhou based on artificial neuralnetwork and cellular automata, Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Geo-Simulation and Virtual GIS Environments, Lin Liu, Xia Li, Kai Liu, Xinchang Zhang, Aijun Chen, Eds., Proc. of SPIE Vol. 7143 71431A · © 2008 SPIE · CCC code: 0277-786X/08/$18 · doi: 10.1117/12.812574

  35. R. White, G. Engelen, Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use patterns. Environ. Plann. A 25(8), 1175–1199 (1993)

    Article  Google Scholar 

  36. W.R. Tobler, Cellular Geography: Philosophy in Geography (D. Reidel, Dordrecht, 1979), pp. 379–386

    Book  Google Scholar 

  37. USACE-HEC, Hydrologic modeling system HEC-HMS technical reference manual (2000), retrieved from http://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_TechnicalReferenceManual_(CPD-74B)

  38. H.A.P. Hapuarachchi, Q.J. Wang, T.C. Pagano, A review of advances in flash flood forecasting. Hydrol. Process. 25(18), 2771–2784 (2011). doi:10.1002/hyp.8040

    Article  Google Scholar 

  39. M.R. Knebl, Z.-L. Yang, K. Hutchison, D.R. Maidment, Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Manag. 75(4), 325–336 (2005). doi:10.1016/j.jenvman.2004.11.024

    Article  Google Scholar 

  40. H.O. Sharif, D. Yates, R. Robert, C. Mueller, The use of an automated nowcasting system to forecast flash floods in an urban watershed. J. Hydrometeorol. 7, 190–202 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of the Department of Irrigation and Drainage (DID) and Malaysian Meteorological Department (MMD) in providing the data that have been used in this study. Appreciation also goes to the Research Management Institute, Universiti Teknologi MARA, for Exploratory Research Grant Scheme (ERGS) Grant (600-RMI/ERGS 5/3 (21/2012)) funded by the Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa Ramly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this paper

Cite this paper

Ramly, S., Tahir, W., Syed Yahya, S.N.H. (2015). Enhanced Flood Forecasting Based on Land-Use Change Model and Radar-Based Quantitative Precipitation Estimation. In: Abu Bakar, S., Tahir, W., Wahid, M., Mohd Nasir, S., Hassan, R. (eds) ISFRAM 2014. Springer, Singapore. https://doi.org/10.1007/978-981-287-365-1_25

Download citation

Publish with us

Policies and ethics