Skip to main content

Network Protection Systems Considering the Presence of STATCOMs

  • Chapter
  • First Online:
Static Compensators (STATCOMs) in Power Systems

Part of the book series: Power Systems ((POWSYS))

  • 2378 Accesses

Abstract

STATCOM is a shunt type Flexible AC Transmission System (FACTS) device that maintains the voltage at the connection point by injecting/absorbing the reactive power. With the presence of STATCOM, the current magnitude during fault is modulated and the performance of available overcurrent relay is constrained. Distance relay, in such a situation, finds problem due to the compensation effect during the dynamic performance of STATCOM. The dynamic response time of STATCOM may overlap with the operating time of distance relay. The control action associated with the STATCOM also affects the performance of distance relay during line faults. The chapter presents the analytical and simulation studies for demonstrating the performance of Mho and quadrilateral type distance relay protecting a line with STATCOM. The performance of Inverse Definite Minimum Time (IDMT) overcurrent relay is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidhu TS, Varma RK, Gangadharan PK, Albasri FA, Ortiz GR (2005) Performance of distance relays on shunt-FACTS compensated transmission lines. IEEE Trans Power Delivery 20(3):1837–1845

    Article  Google Scholar 

  2. Dash PK, Pradhan AK, Panda G, Liew AC (2000) Adaptive relay setting for flexible ac transmission systems (FACTS). IEEE Trans Power Delivery 15(1):38–43

    Article  Google Scholar 

  3. El-Arroudi K, Joos G, McGillis DT (2002) Operation of impedance protection relays with the STATCOM. IEEE Trans Power Delivery 17(2):381–387

    Article  Google Scholar 

  4. Khederzadeh M, Ghorbani A (2011) STATCOM modeling impacts on performance evaluation of distance protection of transmission lines. Euro Trans Electr Power 8(20):63–79

    Google Scholar 

  5. Sham MV, Chethan KS, Vittal KP (2011) Development of adaptive distance relay for STATCOM connected transmission line. In: Proceedings of IEEE PES innovative smart grid technologies, pp 1–6

    Google Scholar 

  6. Jamali S, Kazemi A, Shateri H (2008) Comparing effects of SVC and STATCOM on distance relay tripping characteristic. In Proceedings of IEEE international symposium on industrial electronics, pp 1568–1573

    Google Scholar 

  7. Zhang W, Lee S, Choi M (2010) Setting considerations of distance relay for transmission line with STATCOM. J Electr Eng Technol 5(4):522–529

    Article  Google Scholar 

  8. Zhang W, Lee S, Choi M, Oda S (2010) Considerations on distance relay setting for transmission line with STATCOM. In: Proceeding of IEEE power and energy society general meeting

    Google Scholar 

  9. Hingorani NG, Gyugyi L (1999) Understanding FACTS: concepts & technology of flexible ac transmission systems. Wiley, New York

    Book  Google Scholar 

  10. Sidhu TS, Varma RK (2007) Performance comparison of distance protection schemes for shunt-FACTS compensated transmission lines. IEEE Trans Power Delivery 22(4):2116–2125

    Article  Google Scholar 

  11. Bapiraju JVVN, Shenoy UJ, Sheshadri KG, Khincha HP, Thukaram D (2004) Implementation of DSP based relaying with particular reference to effect of STATCOM on transmission line protection. In: Proceedings of international conference on power system technology POWERCON, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Pradhan .

Editor information

Editors and Affiliations

Appendices

Appendix 1

The least error square algorithm is a powerful tool for estimation of phasors of power system signals. The fault current signal in a series compensated line can be modelled as

$$ i_{k} = I_{1} \sin (k\omega_{0} T_{s} + \phi ) + I_{S} \sin \left[ {k(\omega_{0} - \omega_{m} )T_{s} + \phi_{s} } \right]\,\, + k_{0} e^{{\frac{{ - kT_{s} }}{\tau }}} \, $$
(21.6)

where,

\( I_{1} \) :

the peak of the fundamental component,

\( I_{S} \) :

the peak of the subsynchronous frequency component,

\( \omega_{0} \) :

the fundamental frequency, rad/s

\( \omega_{m} \) :

the subsynchronous frequency, rad/s,

\( T_{s} \) :

sampling interval, s,

\( \phi \) :

the phase angle of the fundamental frequency component,

\( \phi_{s} \) :

the phase angle of the subsynchronous frequency component,

\( k_{0} \) :

the magnitude of the decaying DC component,

\( \tau \) :

the time constant of the decaying DC component, s.

The above equation can be written in a linear form as

$$ i(k) = a_{11} x_{1} + \,a_{12} x_{2} + a_{13} x_{3} + \,a_{14} x_{4} + \,a_{15} x_{5} + \,a_{16} x_{6} $$
(21.7)

where,

$$ \begin{aligned} & a_{11} = \sin (k\omega_{0} T_{s} ),a_{12} = \cos (k\omega_{0} T_{s} ),a_{13} = \sin (k(\omega_{0} - \omega_{m} )T_{s} ), \\ & a_{14} = \cos (k(\omega_{0} - \omega_{m} )T_{s} ),a_{15} = 1,a_{16} = - kT_{s} , \\ & x_{1} = I_{1} \cos \phi ,\,x_{2} = I_{1} \sin \phi ,\,x_{3} = I_{S} \cos \phi_{S} ,\,x_{4} = I_{S} \sin \phi_{S} ,\,x_{5} = k_{0} ,\,x_{6} = \frac{{k_{0} }}{\tau } \\ \end{aligned} $$

The above linear equation can be written as,

$$ \left[ A \right]\left[ X \right] = \left[ B \right]\,\,\,\,\,\,\,\,\, $$
(21.8)

where, \(\,\,\left[ A \right]\, = \,\left[ {\begin{array}{*{20}c} {\sin(\omega_{0} T_{s} )} & {\cos (\omega_{0} T_{s} )} & {\sin((\omega_{0} - \omega_{m} )T_{s} )} & {\cos ((\omega_{0} -\omega_{m} )T_{s} )} & 1 & { - T_{s} } \\ {\sin (\omega_{0}2T_{s} )} & {\cos (\omega_{0} 2T_{s} )} & {\sin ((\omega_{0}- \omega_{m} )2T_{s} )} & {\cos ((\omega_{0} - \omega_{m})2T_{s} )} & 1 & { - 2T_{s} } \\ \vdots &\vdots &\vdots&\vdots &\vdots & \\ \vdots&\vdots &\vdots &\vdots&\vdots & \\ {\sin (\omega_{0} NT_{s} )} & {\cos(\omega_{0} NT_{s} )} & {\sin ((\omega_{0} - \omega_{m} )NT_{s})} & {\cos ((\omega_{0} - \omega_{m} )NT_{s} )} & 1 & {- NT_{s} } \\ \end{array} } \right] {\text{and}} \left[ B \right] = \left[ {i(t_{0} + T_{s} )\,\,i(t_{0} + 2T_{s} )\,\,...i(t_{0} + NT_{s} )} \right]\,^{'} \) and \( \left[ B \right] = \left[ {i(t_{0} + T_{s} )\,\,i(t_{0} + 2T_{s} )\,\, \ldots \;i(t_{0} + NT_{s} )} \right]^{'} \).

In the above relation, N represents for number of sample points per cycle. The unknown vector becomes, \( \left[ X \right] = \left[ {x_{1} \,x_{2} \,x_{3} \,x_{4} \,x_{5} \,x_{6} } \right]^{'} \, \).

To estimate \( \left[ X \right] \), following equation is used and fundamental component is obtained thereafter.

$$ \left[ X \right] = \left[ {\left[ A \right]^{T} \left[ A \right]} \right]^{ - 1} \left[ A \right]^{T} \left[ B \right]\,\,\,\,\,\, $$
(21.9)

For (A4), \( \omega_{m} \) is obtained. The electrical resonance frequency of a series compensated line is described by

$$ \omega_{e} = \omega_{0} \sqrt m \,\,\,\, $$
(21.10)

where \( \omega_{0} \) = the fundamental frequency, rad/s and \( m \) = degree of compensation. The perturbation frequency is,

$$ \,\omega_{m} = \omega_{0} - \omega_{e} \,\,\,\, $$
(21.11)

Appendix 2

21.2.1 System Data

  • The parameters of each line (Line-I-200 km, Line-II and Line-III-300 km);

  • Positive sequence impedance = 0.03293 + j0.3184 Ω/km,

  • Positive sequence capacitance = 0.01136 μF/km

  • Zero sequence impedance = 0.2587 + j1.1740 Ω/km,

  • Zero sequence capacitance = 0.00768 μF/km

  • The parameters of each source are;

  • Positive sequence impedance = 0.06979 + j1.99878 Ω,

  • Zero sequence impedance = 0.2094 + j5.9963 Ω.

21.2.2 STATCOM Specifications

  1. 1.

    STATCOM Specifications: Thee-phase, two-level 24-pulse GTO-based VSC, 300 MVA rated power, 11 kV rated bus voltage. PWM switching frequency, 500 Hz.

  2. 2.

    Coupling transformer: Two transformers Y-Y (115 kV:11 kV, 50 MVA) and Y-Δ (115 kV:11 kV, 50 MVA).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jena, P., Pradhan, A.K. (2015). Network Protection Systems Considering the Presence of STATCOMs. In: Shahnia, F., Rajakaruna, S., Ghosh, A. (eds) Static Compensators (STATCOMs) in Power Systems. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-287-281-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-281-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-280-7

  • Online ISBN: 978-981-287-281-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics