Skip to main content

Ultrasonic Process Intensification for the Efficient Extraction of Nutritionally Active Ingredients of Polysaccharides from Bioresources

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

To reduce the consumption of petroleum and common energy sources, it is important to look for alternative green techniques that are able to produce the same products and fulfill the same industrial applications. Power ultrasound is successful in inducing various physical and chemical transformations due to the intense pressure waves of the ultrasound in a liquid medium. Ultrasound energy could be considered as one of the new forms of energy which is promising for the applications of extraction involving the bioresources. This chapter presents the aspects of ultrasonic process intensification of the extraction of one of the most biologically active ingredients, namely, polysaccharides from diverse herbal materials. Number of studies has been surveyed and summarized to present their best outcomes in the applications of ultrasound in the extraction process. Evidently, ultrasonic conditions provide better environment for isolating the bioactive compounds and more importantly with higher preservation of the bioactivity of extracted components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shirsath S, Sonawane S, Gogate P (2012) Intensification of extraction of natural products using ultrasonic irradiations: a review of current status. Chem Eng Process Process Intesif 53:10–23

    Article  CAS  Google Scholar 

  2. Gogate PR (2008) Cavitational reactors for process intensification of chemical processing applications: a critical review. Chem Eng Process Process Intesif 47:515–527

    Article  CAS  Google Scholar 

  3. Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313

    Article  CAS  Google Scholar 

  4. Gallego-Juarez JA (2010) High-power ultrasonic processing: recent developments and prospective advances. Phys Procedia 3:35–47

    Article  CAS  Google Scholar 

  5. Tang SY, Tan KW, Sivakumar M (2011) Ultrasound cavitation as a green processing technique in the design and manufacture of pharmaceutical nanoemulsions in drug delivery system In: Sanghi R, Singh V (eds) Green chemistry for environmental remediation, John Wiley & Sons, Inc., Hoboken, pp 153–208

    Google Scholar 

  6. Chemat F, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  CAS  Google Scholar 

  7. Gogate PR, Kabadi AM (2009) A review of applications of cavitation in biochemical engineering/biotechnology. Biochem Eng J 44:60–72

    Article  CAS  Google Scholar 

  8. Chen Y, Luo H, Gao A, Zhu M (2011) Ultrasound-assisted extraction of polysaccharides from Litchi (Litchi chinensis Sonn.) seed by response surface methodology and their structural characteristics. Innovative Food Sci Emerg Technol 12:305–309

    Article  CAS  Google Scholar 

  9. Chen W, Wang WP, Zhang HS, Huang Q (2012) Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydr Polym 87:614–619

    Article  CAS  Google Scholar 

  10. Zhao Q, Kennedy JF, Wang X, Yuan X, Zhao B, Peng Y, Huang Y (2011) Optimization of ultrasonic circulating extraction of polysaccharides from Asparagus officinalis using response surface methodology. Int J Biol Macromol 49:181–187

    Article  CAS  Google Scholar 

  11. Yang B, Zhao M, Shi J, Yang N, Jiang Y (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from Longan fruit pericarp. Food Chem 106:685–690

    Article  CAS  Google Scholar 

  12. Cai W, Gu X, Tang J (2008) Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta. Carbohydr Polym 71:403–410

    Article  CAS  Google Scholar 

  13. Chen X, Wang W, Li S, Xue J, Fan L, Sheng Z, Chen Y (2010) Optimization of ultrasound-assisted extraction of Lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells. Carbohydr Polym 80:944–948

    Article  CAS  Google Scholar 

  14. Toma M, Vinatoru M, Paniwnyk L, Mason T (2001) Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason Sonochem 8:137–142

    Article  CAS  Google Scholar 

  15. Ebringerová A, Hromádková Z (2010) An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Cent Eur J Chem 8:243–257

    Google Scholar 

  16. Dahlem O, Demaiffe V, Halloin V, Reisse J (1998) Direct sonication system suitable for medium‐scale sonochemical reactors. AIChE J 44:2724–2730

    Article  CAS  Google Scholar 

  17. Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves I: a preliminary survey. J Am Chem Soc 49:3086–3100

    Article  CAS  Google Scholar 

  18. Mason T (1991) Practical sonochemistry user’s guide to application in chemistry and chemical engineering. Ellis Horwood, New York

    Google Scholar 

  19. Young FR (1989) Cavitation. McGraw-Hill, London

    Google Scholar 

  20. Leighton T (1994) The acoustic bubble. Acadamic Press, USA

    Google Scholar 

  21. Suslick KS (2001) Encyclopaedia of physical science and technology. Academic, San Diego

    Google Scholar 

  22. Gogate PR, Pandit AB (2001) Hydrodynamic cavitation reactors: a state of the art review. Rev Chem Eng 17:1–85

    Article  CAS  Google Scholar 

  23. Sivakumar M, Pandit AB (2002) Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrason Sonochem 9:123–131

    Article  CAS  Google Scholar 

  24. Newman C, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  CAS  Google Scholar 

  25. Riley N (2001) Steady streaming. Annu Rev Fluid Mech 33:43–65

    Article  Google Scholar 

  26. Yasui K (2002) Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am 112:1405–1413

    Article  CAS  Google Scholar 

  27. Povey MJ, Mason TJ (1998) Ultrasound in food processing. Blackie Academic and Professional, London

    Google Scholar 

  28. Hecht E (1996) Physics: calculus (445–450, 489–521). Brooks/Cole, Pacific Grove

    Google Scholar 

  29. Ashokkumar M, Lee J, Kentish S, Grieser F (2007) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14:470–475

    Article  CAS  Google Scholar 

  30. Elder SA (1959) Cavitation microstreaming. J Acoust Soc Am 31:54–64

    Article  Google Scholar 

  31. Lin HY, Thomas JL (2004) Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound. Langmuir 20:6100–6106

    Article  CAS  Google Scholar 

  32. Simon RD (1974) The use of an ultrasonic bath to disrupt cells suspended in volumes of less than 100 μliters. Anal Biochem 60:51–58

    Article  CAS  Google Scholar 

  33. Hagenson LC, Doraiswamy L (1998) Comparison of the effects of ultrasound and mechanical agitation on a reacting solid–liquid system. Chem Eng Sci 53:131–148

    Article  CAS  Google Scholar 

  34. Luche JL, Bianchi C (1998) Synthetic organic sonochemistry. Plenum Press, New York

    Book  Google Scholar 

  35. Lee J, Tuziuti T, Yasui K, Kentish S, Grieser F, Ashokkumar M, Iida Y (2007) Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. J Phys Chem C 111:19015–19023

    Article  CAS  Google Scholar 

  36. Garbellini GS (2012) Ultrasound in electrochemical degradation of pollutants. InTech Rijeka, Croatia, 205–226

    Google Scholar 

  37. Mason T, Paniwnyk L, Lorimer J (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3(3):S253–S260

    Article  CAS  Google Scholar 

  38. Ashokkumar M, Mason TJ (2007) Sonochemistry. Kirk-othmer encyclopaedia of chemical technology. Wiley, New York

    Google Scholar 

  39. Mason TJ, Lorimer JP (2002) Applied sonochemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  40. Kentish S, Ashokkumar M (2011) The physical and chemical effects of ultrasound. In: Ultrasound technologies for food and bioprocessing. Springer, New York, pp 1–12

    Chapter  Google Scholar 

  41. Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg CK (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Sci Emerg Technol 9:155–160

    Article  CAS  Google Scholar 

  42. Aleixo PC, Júnior DS, Tomazelli AC, Rufini IA, Berndt H, Krug FJ (2004) Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation. Anal Chim Acta 512:329–337

    Article  CAS  Google Scholar 

  43. Bermúdez-Aguirre D, Mobbs T, Barbosa-Cánovas GV (2011) Ultrasound applications in food processing. In: Ultrasound technologies for food and bioprocessing. Springer, New York, pp 65–105

    Chapter  Google Scholar 

  44. Chivate M, Pandit A (1995) Quantification of cavitation intensity in fluid bulk. Ultrason Sonochem 2:S19–S25

    Article  CAS  Google Scholar 

  45. Alzorqi I, Manickam S (2015) Effects of axial circulation and dispersion geometry on the scale-up of ultrasonic extraction of polysaccharides. AIChE J 61:1483–1491

    Article  CAS  Google Scholar 

  46. Horst C, Chen YS, Kunz U, Hoffmann U (1996) Design, modelling and performance of a novel sonochemical reactor for heterogeneous reactions. Chem Eng Sci 51(10):1837–1846

    Article  CAS  Google Scholar 

  47. Soudagar S, Samant S (1995) Semiquantitative characterization of ultrasonic cleaner using a novel piezoelectric pressure intensity measurement probe. Ultrason Sonochem 2:S49–S53

    Article  Google Scholar 

  48. Gonze E, Gonthier Y, Boldo P, Bernis A (1998) Standing waves in a high frequency sonoreactor: visualization and effects. Chem Eng Sci 53:523–532

    Article  CAS  Google Scholar 

  49. Wasser SP (2005) Reishi or Ling Zhi (Ganoderma lucidum). Encyclopaedia of dietary supplements, Marcel Dekker, New York, pp. 603–622

    Google Scholar 

  50. Claver IP, Zhang H, Li Qin Z, Huiming Z (2010) Optimization of ultrasonic extraction of polysaccharides from Chinese malted sorghum using response surface methodology. Pak J Nutr 9(4):336–342

    Article  CAS  Google Scholar 

  51. Hromadkova Z, Ebringerova A, Valachovič P (1999) Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrason Sonochem 5(4):163–168

    Article  CAS  Google Scholar 

  52. Hromadkova Z, Ebringerova A, Valachovič P (2002) Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrason Sonochem 9(1):37–44

    Article  CAS  Google Scholar 

  53. Cheung YC, Siu KC, Liu YS, Wu JY (2012) Molecular properties and antioxidant activities of polysaccharide–protein complexes from selected mushrooms by ultrasound-assisted extraction. Process Biochem 47(5):892–895

    Article  CAS  Google Scholar 

  54. Li JW, Ding SD, Xl D (2007) Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao. J Food Eng 80(1):176–183

    Article  CAS  Google Scholar 

  55. Zhao L, Dong Y, Chen G, Hu Q (2010) Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr Polym 80(3):783–789

    Article  CAS  Google Scholar 

  56. Huang SQ, Li JW, Wang Z, Pan HX, Chen JX, Ning ZX (2010) Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules 15(5):3694–3708

    Article  CAS  Google Scholar 

  57. Shi M, Zhang Z, Yang Y (2013) Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydr Polym 95(1):200–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Manickam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Alzorqi, I., Manickam, S. (2016). Ultrasonic Process Intensification for the Efficient Extraction of Nutritionally Active Ingredients of Polysaccharides from Bioresources. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_65

Download citation

Publish with us

Policies and ethics