Skip to main content

Role of Process Intensification by Ultrasound

Hydrodynamic Cavitation for the Development of Hybrid Wastewater Treatment Processes

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

Acoustic and hydrodynamic cavitations have proved a milestone as process intensification devices, especially in wastewater treatment processes. Generation of cavities and their subsequent collapse is a common principle of both types of cavitations by which chemical and physical changes take place. There are a number of potential challenges which are not yet resolved in developing a water treatment technology using hydrodynamic and acoustic cavitation. When it is compared with the conventional water treatment technique, the cavitational approach shows significant difference in treatment time required and degradation efficiency of organic pollutants. In this book chapter, current trends of developments of hybrid wastewater treatment processes using ultrasound and hydrodynamic cavitation are discussed with examples: hybrid system development using hydrogel, ultrasound and hydrodynamic cavitation for degradation of dyes, and hybrid wastewater treatment system for adsorption of phenol using nanoclay and ultrasound. Water treatment using doped photocatalytic materials/hydrodynamic cavitation is discussed. The scale-up issues specifically for the development of wastewater treatment system using cavitation technique for mixed dyes are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorisation of textile dye containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  2. Cho IH, Zoh KD (2007) Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes Pigment 75:533–543

    Article  CAS  Google Scholar 

  3. Song YL, Li JT, Chen H (2009) Degradation of C.I. Acid Red 88 aqueous solution by combination of Fenton’s reagent and ultrasound irradiation. J Chem Technol Biotechnol 84:578–583

    Article  CAS  Google Scholar 

  4. Kusic H, Koprivanac N, Srsan L (2006) Azo dye degradation using Fenton type processes assisted by UV irradiation: a kinetic study. J Photochem Photobiol A 181:195–202

    Article  CAS  Google Scholar 

  5. Nilsson R, Nordlinder R, Wass U, Meding B, Belin L (1993) Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. Br J Ind Med 50:65–70

    CAS  Google Scholar 

  6. Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye- Acid Blue. J Hazard Mater 186:891–901

    Article  CAS  Google Scholar 

  7. Papic S, Koprivanac N, Loncaric Bozic A, Metes A (2004) Removal of some reactive dyes from synthetic wastewater by combined Al (III) coagulation/carbon adsorption process. Dyes Pigment 62:291–298

    Article  CAS  Google Scholar 

  8. Yang CL, McGarrahan J (2005) Electrochemical coagulation for textile effluent decolorization. J Hazard Mater 127:40–47

    Article  CAS  Google Scholar 

  9. Ellouze E, Ellouze D, Jrad A, Ben Amar R (2011) Treatment of synthetic textile wastewater by combined chemical coagulation/membrane processes. Desalination 33:118–124

    Article  CAS  Google Scholar 

  10. Chen AH, Chen SM (2009) Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans. J Hazard Mater 172:1111–1121

    Article  CAS  Google Scholar 

  11. Elisangela F, Andrea Z, Fabio DG, Cristiano RDM, Regina DL, Artur CP (2008) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegrad 63:280–288

    Article  Google Scholar 

  12. Türgay O, Ersöz G, Atalay S, Forss J, Welander U (2011) The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep Purif Technol 79:26–33

    Article  Google Scholar 

  13. Saharan VK, Pandit AB, Kumar PSS, Anandan S (2011) Hydrodynamic cavitation as an advanced oxidation technique for the degradation of Acid Red 88 dye. Ind Eng Chem Res 51:1981–1989

    Article  Google Scholar 

  14. Young FR (1999) Cavitation. Imperial College Press, London

    Book  Google Scholar 

  15. Stankiewicz AI, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Progr 96:22–34

    CAS  Google Scholar 

  16. Joseph CG, Puma GL, Bono A, Krishnaiah D (2009) Sonophotocatalysis in advanced oxidation process: a short review. Ultrason Sonochem 16:583–589

    Article  CAS  Google Scholar 

  17. Cravotto G, Cintas P (2012) Harnessing mechano-chemical effects with ultrasound induced reactions. Chem Sci 3:295–307

    Article  CAS  Google Scholar 

  18. Adewuyi YG (2001) Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res 40:4681–4715

    Article  CAS  Google Scholar 

  19. Thompson LH, Doraiswamy LK (1999) Sonochemistry: science and engineering. Ind Eng Chem Res 38:1215–1249

    Article  CAS  Google Scholar 

  20. Mason TJ, Lorimer JP (2002) Applied sonochemistry – the uses of power ultrasound in chemistry and processing. Wiley, Weinheim

    Google Scholar 

  21. Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399

    Article  Google Scholar 

  22. Bagal MV, Gogate PR (2013) Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes. Ultrason Sonochem 20:1226–1235

    Article  CAS  Google Scholar 

  23. Yang B, Zuo JN, Tang XH, Liu F, Yu X, Tang XY, Jiang H, Gan LL (2014) Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode. Ultrason Sonochem 21:1310–1317

    Article  CAS  Google Scholar 

  24. Zhao L, Ma J, Zhai XD (2010) Enhanced mechanism of catalytic ozonation by ultrasound with orthogonal dual frequencies for the degradation of nitrobenzene in aqueous solution. Ultrason Sonochem 17:84–91

    Article  CAS  Google Scholar 

  25. Zhao L, Ma WC, Ma J, Yang JJ, Wen G, Sun ZZ (2014) Characteristic mechanism of ceramic honeycomb catalytic ozonation enhanced by ultrasound with triple frequencies for the degradation of nitrobenzene in aqueous solution. Ultrason Sonochem 21:104–112

    Article  Google Scholar 

  26. Chakinala AG, Gogate PR, Burgess AE, Bremner DH (2009) Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chem Eng J 152:498–502

    Article  CAS  Google Scholar 

  27. Gogate PR (2008) Treatment of wastewater streams containing phenolic compounds using hybrid techniques based on cavitation: a review of the current status and the way forward. Ultrason Sonochem 15:1–15

    Article  CAS  Google Scholar 

  28. Gogate PR, Pandit AB (2000) Engineering design methods for cavitation reactors II: hydrodynamic cavitation. AIChE J 46:1641–1649

    Article  CAS  Google Scholar 

  29. Didenko YT, McNamara WB, Suclick KS (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121:5817–5818

    Article  CAS  Google Scholar 

  30. Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrason Sonochem 15:1033–1037

    Article  CAS  Google Scholar 

  31. Mortland MM, Stephen SS, Boyd M (1986) Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays Clay Miner 34:581–585

    Article  CAS  Google Scholar 

  32. Banat F, Al-Asheh S, Al-Anbar S, Al-Refaie S (2007) Microwave- and acid-treated bentonite as adsorbents of methylene blue from a simulated dye wastewater. Bull Eng Geol Environ 66:53

    Article  CAS  Google Scholar 

  33. Banat F, Al Bashir A, Al Aseh S, Hayajneh O (2000) Adsorption of phenol by bentonite. Environ Pollut 107:390

    Article  Google Scholar 

  34. Ozcan AS, Erdem B, Ozacan A (2004) Adsorption of acid blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. J Colloid Interf Sci 280:44

    Article  Google Scholar 

  35. Yeddou N, Bensmaili A (2005) Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture. Desalination 185:499

    Article  CAS  Google Scholar 

  36. Yapar S, Yilmaz M (2004) Removal of phenol by using montmorillonite, clinoptilolite, and hydrotalcite. Adsorption 10:287–298

    Article  CAS  Google Scholar 

  37. Saquib M, Muneer M (2003) TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes Pigment 56:37–49

    Article  CAS  Google Scholar 

  38. Wang J, Hiang Y, Zhang Z, Zhao G, Zhan G, Ma T, Sun W (2007) Investigation on the sonocatalytic degradation of Congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors. Desalination 216:196–208

    Article  CAS  Google Scholar 

  39. Kubo M, Matsuoka K, Takahashi A, Shibasaki-Kitakawa N, Yonemoto T (2005) Kinetics of ultrasonic degradation of phenol in the presence of TiO2 particles. Ultrason Sonochem 12:263–269

    Article  CAS  Google Scholar 

  40. Mane JD, Modi S, Nagwade S, Phadnis SP, Bhadari VM, Mane JD, Modi S, Nagwade S, Phadnis SP, Bhadari VM (2006) Treatment of spentwash using chemically modified bagasse and colour removal studies. Biores Technol 97:1752–1755

    Article  CAS  Google Scholar 

  41. Atar N, Olgun A (2007) Removal of acid blue 062 in aqueous solution using calcinated colemanite ore waste. J Hazard Mater 146(1–2):171–179

    Article  CAS  Google Scholar 

  42. Li M, Li JT, Sun HW (2008) Sonochemical decolorization of acid black 210 in the presence of exfoliated graphite. Ultrason Sonochem 15:37–42

    Article  Google Scholar 

  43. Li P, Siddaramaiah NH, Kim S-B, Heo J-HL (2008) Compos Part B-Eng 39(5):756–763

    Article  Google Scholar 

  44. Mak SY, Chen DH (2004) Fast adsorption of methylene blue on polyacrylic acid- bound iron oxide magnetic nanoparticles. Dyes Pigment 61:93–98

    Article  CAS  Google Scholar 

  45. Sonawane SH, Chaudhari PL, Ghodke SA, Parande MG, Bhandari VM, Mishra S, Kulkarni RD (2009) Ultrasound assisted synthesis of polyacrylic acid–nanoclay nanocomposite and its application in sonosorption studies of malachite green dye. Ultrason Sonochem 16:351–355

    Article  CAS  Google Scholar 

  46. Laizhou S, Jibin W, Qiuyan Z, Zunju Z (2008) Tsinghua Sci Technol 13(2):249–256

    Article  Google Scholar 

  47. Ashokkumar M, Mason TJ (2007) Sonochemistry. In: Kirk-Othmer encyclopedia of chemical technology. Wiley VCH, NewYork

    Google Scholar 

  48. Daneshvar N, Aber S, Seyed Dorraji MS, Khataee AR, Rasoulifard MH (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep Purif Technol 58:91–98

    Article  CAS  Google Scholar 

  49. Mahmoodi NM, Arami M, Limaee NY, Gharanjig K (2007) Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. J Hazard Mater 145:65–71

    Article  CAS  Google Scholar 

  50. Malev O, Klobucar RS, Fabbretti E, Trebse P (2012) Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non-target aquatic organisms: microalgae desmodesmus subspicatus and amphipod. Pestic Biochem Phys 104:178–186

    Article  CAS  Google Scholar 

  51. Tisler T, Jemec A, Mozetic B, Trebse P (2009) Hazard identification of imidacloprid to aquatic environment. Chemosphere 76:907–914

    Article  CAS  Google Scholar 

  52. Segura C, Zaror C, Mansilla HD, Mondaca MA (2008) Imidacloprid oxidation by Photo-Fenton reaction. J Hazard Mater 150:679–686

    Article  CAS  Google Scholar 

  53. Patil PN, Gogate PR (2012) Degradation of methyl parathion using hydrodynamic cavitation: effect of operating parameters and intensification using additives. Sep Purif Technol 95:172–179

    Article  CAS  Google Scholar 

  54. Guo Z, Zheng Z, Zheng S, Hu W, Feng R (2005) Effect of various sono-oxidation parameters on the removal of aqueous 2,4-dinitrophenol. Ultrason Sonochem 12:461–465

    Article  CAS  Google Scholar 

  55. Zheng W, Maurin M, Tarr MA (2005) Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers. Ultrason Sonochem 12:313–317

    Article  CAS  Google Scholar 

  56. Mahamuni NN, Pandit AB (2006) Effect of additives on ultrasonic degradation of phenol. Ultrason Sonochem 13:165–174

    Article  CAS  Google Scholar 

  57. Wu Z, Franke M, Ondruschka B, Zhang Y, Ren Y, Braeutigam P, Wang W (2011) Enhanced effect of suction-cavitation on the ozonation of phenol. J Hazard Mater 190:375–380

    Article  CAS  Google Scholar 

  58. Wu Z, Shen H, Ondruschka B, Zhang Y, Wang W, Bremner DH (2012) Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation. J Hazard Mater 235–236:152–160

    Article  Google Scholar 

  59. Jyoti KK, Pandit AB (2004) Ozone and cavitation for water disinfection. Biochem Eng J 18:9–19

    Article  CAS  Google Scholar 

  60. Malato S, Blanco J, Caceres J, Fernandez-Alba AR, Aguera A, Rodriguez A (2002) Photocatalytic treatment of water-soluble pesticides by Photo-Fenton and TiO2 using solar energy. Catal Today 76:209–220

    Article  CAS  Google Scholar 

  61. Wamhoff H, Schneider V (1999) Photodegradation of imidacloprid. J Agric Food Chem 47:1730–1734

    Article  CAS  Google Scholar 

  62. Bourgin M, Violleau F, Debrauwer L, Albet J (2011) Ozonation of imidacloprid in aqueous solutions: reaction monitoring and identification of degradation products. J Hazard Mater 190:60–68

    Article  CAS  Google Scholar 

  63. Sunita R-J, Saharan VK, Pinjari DV, Sonawane S, Saini D, Pandit A (2013) Synergetic effect of combination of AOP’s (hydrodynamic cavitation and H2O2) on the degradation of neonicotinoid class of insecticide. J Hazard Mater 261:139–147

    Article  Google Scholar 

  64. Joshi RK, Gogate PR (2012) Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies. Ultrason Sonochem 19:532–539

    Article  CAS  Google Scholar 

  65. Kumar PS, Kumar MS, Pandit AB (2000) Experimental quantification of chemical effects of hydrodynamic cavitation. Chem Eng Sci 55:1633–1639

    Article  CAS  Google Scholar 

  66. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  67. Shirsath SR, Pinjari DV, Gogate PR, Sonawane SH, Pandit AB (2013) Ultrasound assisted synthesis of doped TiO2 nano-particles: characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent. Ultrason Sonochem 20:277–286

    Article  CAS  Google Scholar 

  68. Perez IH, Maubert AM, Rendón L, Santiago P, Hernández HH, Díaz. Arceo L, Garibay Febles V, González EP, González-Reyes L (2012) Ultrasonic synthesis: structural, optical and electrical correlation of TiO2 nanoparticles. Int J Electrochem Sci 7:8832–8847

    Google Scholar 

  69. Bethi B, Sonawane SH, Rohit GS, Holkar CR, Pinjari DV, Bhanvase BA, Pandit AB (2016) Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP. Ultrason Sonochem 28:150–160

    Article  CAS  Google Scholar 

  70. Shirsath SR, Patil AP, Patil R, Naik JB, Gogate PR, Sonawane SH (2013) Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrason Sonochem 20:914–923

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Bethi, B., Sonawane, S., Bhanvase, B. (2016). Role of Process Intensification by Ultrasound. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_59

Download citation

Publish with us

Policies and ethics