Skip to main content

Transition to School: Prior to School Mathematical Skills and Knowledge of Low-Achieving Children at the End of Grade 1

  • Chapter
  • First Online:
Mathematics and Transition to School

Part of the book series: Early Mathematics Learning and Development ((EMLD))

Abstract

Recent psychological studies as well as research findings in mathematics education highlight the significance of early number skills for the child’s achievement in mathematics at the end of primary school. In this context, the ongoing 3-year longitudinal study discussed in this chapter, investigates the development of early numeracy understanding of 408 children from 1 year prior to school until the end of Grade 1. The study seeks to identify children who struggle with respect to their mathematics learning after the first year of school and compare their achievements with their number concept development 1 year prior to school as well as immediately prior to school entry (Grade 1). Initial findings suggest that children’s understanding and skills with respect to number and counting are important precursors for later school success. The children who were identified as low-achievers in mathematics at the end of Grade 1, also demonstrated less knowledge and skills than their peers prior to school.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Migration background in this context means that the children speak at least one language other than German at home.

  2. 2.

    However, it is important to note that not all arithmetic learning difficulties can be put on a level with dyscalculia.

  3. 3.

    A fourth measuring point was included in order to acknowledge the fact that the group of low-achieving children might change towards the end of junior primary school, i.e. that children who show slower (mathematical) development than the majority of their peers might perform more weakly at the end of Grade 1 than at the end of Grade 2.

  4. 4.

    The FYSMI is conducted in the first year of school, which in Australia is the preparatory grade preceding Grade 1. This preparatory year is compulsory and children are aged between 4 years 9 months and 6 years. In Germany in contrast, formal schooling starts with Grade 1 when children are 6 years old. While the vast majority of German five-year-olds attend kindergarten, this is not compulsory and involves fees to be paid by the parents.

  5. 5.

    This instrument is a German adaptation of the Australian Early Years Interview (Department of Education, Employment and Training 2001).

  6. 6.

    In order to base the statistical analyses on a complete and coherent data set, all student data that was incomplete with the respect to all measuring points or clearly incorrect due to mistakes during the data collection and recording were omitted.

  7. 7.

    The framework of “growth points” reflects the analysis of “available research on key stages of levels in young children’s mathematics learning, as well as frameworks developed by other authors and groups to describe learning” (Clarke et al. 2002, p. 12). The framework was developed to describe mathematical growth of children from 5 to 8 years of age. According to the ENRP researchers “growth points can be considered primary stepping stones along the way to understanding important mathematical ideas” (Clarke et al. 2003, p. 69). To illustrate this concept, the growth point descriptors for counting (interview part A) are given below (Clarke et al. 2002, p. 124).

    A. Counting: 0. Not apparent; 1. Rote counting; 2. Counting collections up to 20 objects; 3. Counting by 1 s (forward/backward from variable starting points between 1 and 100; knows numbers before/after); 4. Counting from 0 by 2, 5, and 10 s; 5. Counting from x (where x > 0) by 2, 5, and 10 s; 6. Extending and applying counting skills.

References

  • Anderson, A., Anderson, J., & Thauberger, C. (2008). Mathematics learning and teaching in the early years. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 95–132). Charlotte: Information Age Publishing.

    Google Scholar 

  • Aunola, K., Leskinen, E., Lerkkanen, M.-K., & Nurmi, J.-E. (2004). Developmental dynamics of mathematical performance from preschool to grade 2. Journal of Educational Psychology, 96, 762–770.

    Article  Google Scholar 

  • Baroody, A. J., & Wilkins, J. (1999). The development of informal counting, number, and arithmetic skills and concepts. In J. Copley (Ed.), Mathematics in the early years (pp. 48–65). Reston: NCTM.

    Google Scholar 

  • Clarke, D., Cheeseman, J., Gervasoni, A., Gronn, D., Horne, M., McDonough, A., Montgomery, P., Roche, A., Sullivan, P., Clarke, B., & Rowley, G. (2002). Early numeracy research project final report. Melbourne: Mathematics Teaching and Learning Centre, Australian Catholic University.

    Google Scholar 

  • Clarke, D., Cheeseman, J., McDonough, A., & Clarke, B. (2003). Assessing and developing measurement with young children. In D. Clements & G. Bright (Eds.), Learning and teaching measurement. NCTM Yearbook (pp. 68–80). Reston: NCTM.

    Google Scholar 

  • Clarke, B., Clarke, D., & Cheeseman, J. (2006). The mathematical knowledge and understanding young children bring to school. Mathematics Education Research Journal, 18(1), 78–103.

    Article  Google Scholar 

  • Clarke, B., Clarke, D., GrĂĽĂźing, M., & Peter-Koop, A. (2008). Mathematische Kompetenzen von Vorschulkindern: Ergebnisse eines Ländervergleichs zwischen Australien und Deutschland. Journal fĂĽr Mathematik-Didaktik, 29(3/4), 259–286.

    Article  Google Scholar 

  • Clements, D. (1984). Training effects on the development and generalization of Piagetian logical operations and knowledge of number. Journal of Educational Psychology, 76, 766–776.

    Article  Google Scholar 

  • Cooper, T. J., Heirdsfield, A., & Irons, C. J. (1996). Children’s mental strategies for addition ans subtraction word problems. In J. Mulligan & M. Mitchelmore (Eds.), Children’s learning number (pp. 147–162). Adelaide: AAMT.

    Google Scholar 

  • Dehane, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  Google Scholar 

  • Department of Education, Employment and Training (DEET). (2001). Early numeracy interview booklet. Melbourne: Department of Education, Employment and Training.

    Google Scholar 

  • Dornheim, D. (2008). Prädikatoren von Rechenleistung und Rechenschwäche. Berlin: Logos.

    Google Scholar 

  • Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer.

    Book  Google Scholar 

  • Fuson, K. C., Secada, W. G., & Hall, J. W. (1983). Matching, counting, and the conservation of number equivalence. Child Development, 54, 91–97.

    Article  Google Scholar 

  • Ginsburg, H., Inoue, N., & Seo. K. (1999). Young children doing mathematics: Observations of everyday activities. In J. Copley (Ed.), Mathematics in the early years (pp. 88–99). Reston: NCTM.

    Google Scholar 

  • GrĂĽĂźing, M., & Peter-Koop, A. (2008). Effekte vorschulischer mathematischer Förderung am Ende des ersten Schuljahres: Erste Befunde einer Längsschnittstudie. Zeitschrift fĂĽr Grundschulforschung, 1(1), 65–82.

    Google Scholar 

  • Kaufmann, S. (2003). FrĂĽherkennung von Rechenstörungen in der Eingangsklasse der Grundschule und darauf abgestimmte remediale MaĂźnahmen. Frankfurt a. M.: Lang.

    Google Scholar 

  • Krajewski, K. (2005). Vorschulische Mengenbewusstheit von Zahlen und ihre Bedeutung fĂĽr die FrĂĽherkennung von Rechenschwäche. In M. Hasselhorn, W. Schneider, & H. Marx (Eds.), Diagnostik von Mathematikleistungen (pp. 49–70). Göttingen: Hogrefe.

    Google Scholar 

  • Krajewski, K. (2008). Vorschulische Förderung mathematischer Kompetenzen. In F. Petermann & W. Schneider (Eds.), Angewandte Entwicklungspsychologie (pp. 275–304). Göttingen: Hogrefe.

    Google Scholar 

  • Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a 4-year longitudinal study. Learning and Instruction, 19(6), 513–526.

    Article  Google Scholar 

  • Krajewski, K., KĂĽspert, P., & Schneider, W. (2002). DEMAT 1 +. Deutscher Mathematiktest fĂĽr erste Klassen. Göttingen: Hogrefe.

    Google Scholar 

  • Krajewski, K., Liehm, S., & Schneider, W. (2004). DEMAT 2 +. Deutscher Mathematiktest fĂĽr zweite Klassen. Göttingen: Hogrefe.

    Google Scholar 

  • Krajewski, K., GrĂĽĂźing, M., & Peter-Koop, A. (2009). Die Entwicklung mathematischer Kompetenzen bis zum Beginn der Grundschulzeit. In A. Heinze & M. GrĂĽĂźing (Eds.), Mathematiklernen vom Kindergarten bis zum Studium. Kontinuität und Kohärenz als Herausforderung fĂĽr den Mathematikunterricht (pp. 17–34). MĂĽnster: Waxmann.

    Google Scholar 

  • Peter-Koop, A., & GrĂĽĂźing, M. (2011). Elementarmathematisches Basisinterview KiGa. Offenburg: Mildenberger.

    Google Scholar 

  • Peter-Koop, A., & GrĂĽĂźing, M. (2014). Early enhancement of kindergarten children potentially at risk in learning school mathematics—Design and findings of an intervention study. In U. Kortenkamp, C. Benz, B. Brandt, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early Mathe-matics learning: Selected papers of the POEM 2012 (S. 307–322). New York: Springer.

    Chapter  Google Scholar 

  • Peter-Koop, A., Wollring, B., Spindeler, B., & GrĂĽĂźing, M. (2007). Elementarmathematisches Basisinterview (Zahlen und Operationen). Offenburg: Mildenberger.

    Google Scholar 

  • Peter-Koop, A., GrĂĽĂźing, M., & Schmitman gen. Pothmann, A. (2008). Förderung mathematischer Vorläuferfähigkeiten: Befunde zur vorschulischen Identifizierung und Förderung von potenziellen Risikokindern in Bezug auf das schulische Mathematiklernen. Empirische Pädagogik, 22(2), 208–223.

    Google Scholar 

  • Piaget, J. (1952). The child’s conception of number. London: Routledge.

    Google Scholar 

  • Resnick, L. B. (1983). A developmental theory of number understanding. In H. Ginsburg (Ed.), The development of mathematical thinking (pp. 109–151). New York: Academic Press.

    Google Scholar 

  • Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 44(2), 162–169.

    Article  Google Scholar 

  • Sophian, C. (1995). Representation and reasoning in early numerical development. Child Development, 66, 559–577.

    Article  Google Scholar 

  • Stern, E. (1997). Ergebnisse aus dem SCHOLASTIK-Projekt. In F. E. Weinert & A. Helmke (Eds.), Entwicklung im Grundschulalter (pp. 157–170). Weinheim: Beltz.

    Google Scholar 

  • van Luit, J., van de Rijt, B., & Hasemann, K. (2001). OsnabrĂĽcker Test zur Zahlbegriffsentwicklung (OTZ). Göttingen: Hogrefe.

    Google Scholar 

  • Weinert, F. E., & Helmke, A. (Eds.) (1997). Entwicklung im Grundschulalter. Weinheim: Beltz.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Peter-Koop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Peter-Koop, A., Kollhoff, S. (2015). Transition to School: Prior to School Mathematical Skills and Knowledge of Low-Achieving Children at the End of Grade 1. In: Perry, B., MacDonald, A., Gervasoni, A. (eds) Mathematics and Transition to School. Early Mathematics Learning and Development. Springer, Singapore. https://doi.org/10.1007/978-981-287-215-9_5

Download citation

Publish with us

Policies and ethics