Skip to main content

Hydrogels for Stem Cell Fate Control and Delivery in Regenerative Medicine

  • Chapter
  • First Online:
Book cover In-Situ Gelling Polymers

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The dynamic tissue environment presents spatial and temporal heterogeneity in the cellular and matrix composition. Oxidative stress and inflammation affect the mobilization of stem cells from the stem cell niche, survival and engraftment of exogenous stem cells, and are therefore important considerations when delivering cells in injectable hydrogels to the site of tissue injury. Strategies of anti-inflammation and/or anti-oxidative injury may be incorporated into multifunctional hydrogels to modify the tissue environment and help in the survival/engraftment of the transplanted cells. This could improve the outcome of the regenerative therapy by combined approaches utilizing hydrogels, microtechnologies and controlled release strategies. These advances in hydrogel design and related enabling technologies will continue to grow and aid in our future design of customized hydrogel delivery systems for healthy and injured/diseased tissues, and guide the development of future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caplan, A.I.: Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213, 341–347 (2007)

    CAS  Google Scholar 

  2. Tabar, V., Studer, L.: Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15, 82–92 (2014)

    CAS  Google Scholar 

  3. Vazin, T., Schaffer, D.V.: Engineering strategies to emulate the stem cell niche. Trends Biotechnol. 28, 117–124 (2010)

    CAS  Google Scholar 

  4. Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., et al.: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005)

    CAS  Google Scholar 

  5. Fuchs, E., Tumbar, T., Guasch, G.: Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004)

    CAS  Google Scholar 

  6. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al.: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    CAS  Google Scholar 

  7. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., et al.: Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    CAS  Google Scholar 

  8. Toh, W.S., Liu, H., Heng, B.C., Rufaihah, A.J., Ye, C.P., Cao, T.: Combined effects of TGFβ1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors 23, 313–321 (2005)

    CAS  Google Scholar 

  9. Mackay, A.M., Beck, S.C., Murphy, J.M., Barry, F.P., Chichester, C.O., Pittenger, M.F.: Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4, 415–428 (1998)

    CAS  Google Scholar 

  10. Liu, H., Toh, W.S., Lu, K., MacAry, P.A., Kemeny, D.M., Cao, T.: A subpopulation of mesenchymal stromal cells with high osteogenic potential. J. Cell Mol. Med. 13, 2436–2447 (2009)

    Google Scholar 

  11. Lu, Q., Liu, H., Cao, T.: Efficient Isolation of bone marrow adipocyte progenitors by silica microbeads incubation. Stem Cells Dev. 22, 2520–2531 (2013)

    CAS  Google Scholar 

  12. Liu, T.M., Martina, M., Hutmacher, D.W., Hui, J.H.P., Lee, E.H., Lim, B.: Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells 25, 750–760 (2007)

    Google Scholar 

  13. Gimble, J.M., Guilak, F.: Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5, 362–369 (2003)

    Google Scholar 

  14. Jones, B.A., Pei, M.: Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng. Part B. Rev. 18, 301–311 (2012)

    CAS  Google Scholar 

  15. Fan, J., Varshney, R.R., Ren, L., Cai, D., Wang, D.-A.: Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng. Part B. Rev. 15, 75–86 (2009)

    CAS  Google Scholar 

  16. Chang, H., Knothe Tate, M.L.: Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl. Med. 1, 480–491 (2012)

    CAS  Google Scholar 

  17. Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T.M., et al.: Derivation of Clinically Compliant MSCs from CD105+ CD24− Differentiated Human ESCs. Stem Cells 25, 425–436 (2007)

    CAS  Google Scholar 

  18. Lian, Q., Zhang, Y., Zhang, J., Zhang, H.K., Wu, X., Zhang, Y., et al.: Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121, 1113–1123 (2010)

    Google Scholar 

  19. Toh, W.S., Lee, E.H., Cao, T.: Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev. 7, 544–559 (2011)

    Google Scholar 

  20. da Silva, Meirelles L., Fontes, A.M., Covas, D.T., Caplan, A.I.: Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 20, 419–427 (2009)

    Google Scholar 

  21. Stolzing, A., Jones, E., McGonagle, D., Scutt, A.: Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech. Ageing Dev. 129, 163–173 (2008)

    CAS  Google Scholar 

  22. Payne, K.A., Didiano, D.M., Chu, C.R.: Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthritis Cartilage 18, 705–713 (2010)

    CAS  Google Scholar 

  23. Shiba, Y., Fernandes, S., Zhu, W.-Z., Filice, D., Muskheli, V., Kim, J., et al.: Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322–325 (2012)

    CAS  Google Scholar 

  24. Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., et al.: Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009)

    CAS  Google Scholar 

  25. Rufaihah, A.J., Haider, H.K., Heng, B.C., Ye, L., Toh, W.S., Tian, X.F., et al.: Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing the VEGF165 gene. J. Gene Med. 9, 452–461 (2007)

    CAS  Google Scholar 

  26. Rufaihah, A.J., Haider, H.K., Heng, B.C., Ye, L., Tan, R.S., Toh, W.S., et al.: Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regen. Med. 5, 231–244 (2010)

    CAS  Google Scholar 

  27. Toh, W.S., Yang, Z., Liu, H., Heng, B.C., Lee, E.H., Cao, T.: Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25, 950–960 (2007)

    CAS  Google Scholar 

  28. Toh, W.S., Guo, X.-M., Choo, A.B., Lu, K., Lee, E.H., Cao, T.: Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells in vitro. J. Cell Mol. Med. 13, 3570–3590 (2009)

    Google Scholar 

  29. Toh, W.S., Yang, Z., Heng, B.C., Cao, T.: Differentiation of human embryonic stem cells toward the chondrogenic lineage. Methods Mol. Biol. 407, 333–349 (2007)

    CAS  Google Scholar 

  30. Toh, W.S., Lee, E.H., Richards, M., Cao, T.: In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods Mol. Biol. 584, 317–331 (2010)

    CAS  Google Scholar 

  31. Cao, T., Heng, B.C., Ye, C.P., Liu, H., Toh, W.S., Robson, P., et al.: Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue Cell 37, 325–334 (2005)

    CAS  Google Scholar 

  32. Heng, B.C., Toh, W.S., Pereira, B.P., Tan, B.L., Fu, X., Liu, H., et al.: An autologous cell lysate extract from human embryonic stem cell (hESC) derived osteoblasts can enhance osteogenesis of hESC. Tissue Cell 40, 219–228 (2008)

    Google Scholar 

  33. Guloglu, M.O., Larsen, A., Brundin, P.: Adipocytes derived from PA6 cells reliably promote the differentiation of dopaminergic neurons from human embryonic stem cells. J. Neurosci. Res. 92, 564–573 (2014)

    CAS  Google Scholar 

  34. Zhang, S.-C., Wernig, M., Duncan, I.D., Brustle, O., Thomson, J.A.: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotech. 19, 1129–1133 (2001)

    CAS  Google Scholar 

  35. Kidwai, F.K., Liu, H., Toh, W.S., Fu, X., Jokhun, D.S., Movahednia, M.M., et al.: Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment. J. Invest. Dermatol. 133, 618–628 (2013)

    CAS  Google Scholar 

  36. Hay, D.C., Zhao, D., Fletcher, J., Hewitt, Z.A., McLean, D., Urruticoechea-Uriguen, A., et al.: Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26, 894–902 (2008)

    CAS  Google Scholar 

  37. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    CAS  Google Scholar 

  38. Heng, B., Cao, T., Haider, H., Wang, D., Sim, E.-W., Ng, S.: An overview and synopsis of techniques for directing stem cell differentiation in vitro. Cell Tissue Res. 315, 291–303 (2004)

    Google Scholar 

  39. Heng, B.C., Cao, T., Lee, E.H.: Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22, 1152–1167 (2004)

    Google Scholar 

  40. Heng, B.C., Cao, T., Stanton, L.W., Robson, P., Olsen, B.: Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J. Bone Miner. Res. 19, 1379–1394 (2004)

    CAS  Google Scholar 

  41. Heng, B.C., Haider, H.K., Sim, E.K.-W., Cao, T., Ng, S.C.: Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc. Res. 62, 34–42 (2004)

    CAS  Google Scholar 

  42. Toh, W.S., Spector, M., Lee, E.H., Cao, T.: Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Mol. Pharm. 8, 994–1001 (2011)

    CAS  Google Scholar 

  43. Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotech. 23, 47–55 (2005)

    CAS  Google Scholar 

  44. Guvendiren, M., Burdick, J.A.: Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24, 841–846 (2013)

    CAS  Google Scholar 

  45. Lutolf, M.P., Gilbert, P.M., Blau, H.M.: Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009)

    CAS  Google Scholar 

  46. Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002)

    CAS  Google Scholar 

  47. Fisher, O.Z., Khademhosseini, A., Langer, R., Peppas, N.A.: Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43, 419–428 (2009)

    Google Scholar 

  48. Bhattarai, N., Ramay, H.R., Gunn, J., Matsen, F.A., Zhang, M.Q.: PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Controlled Release 103, 609–624 (2005)

    CAS  Google Scholar 

  49. Chenite, A., Buschmann, M., Wang, D., Chaput, C., Kandani, N.: Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr. Polym. 46, 39–47 (2001)

    CAS  Google Scholar 

  50. Cao, Y.X., Zhang, C., Shen, W.B., Cheng, Z.H., Yu, L.L., Ping, Q.N.: Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Controlled Release 120, 186–194 (2007)

    CAS  Google Scholar 

  51. Nair, L.S., Starnes, T., Ko, J.W.K., Laurencin, C.T.: Development of injectable thermogelling chitosan-inorganic phosphate solutions for biomedical applications. Biomacromolecules 8, 3779–3785 (2007)

    CAS  Google Scholar 

  52. Li, Z., Cho, S., Kwon, I.C., Janát-Amsbury, M.M., Huh, K.M.: Preparation and characterization of glycol chitin as a new thermogelling polymer for biomedical applications. Carbohydr. Polym. 92, 2267–2275 (2013)

    CAS  Google Scholar 

  53. Mazumder, M.A.J., Fitzpatrick, S.D., Muirhead, B., Sheardown, H.: Cell-adhesive thermogelling PNIPAAm/hyaluronic acid cell delivery hydrogels for potential application as minimally invasive retinal therapeutics. J. Biomed. Mater. Res., Part A 100A, 1877–1887 (2012)

    CAS  Google Scholar 

  54. Arvidson, S.A., Lott, J.R., McAllister, J.W., Zhang, J., Bates, F.S., Lodge, T.P., et al.: Interplay of phase separation and thermoreversible gelation in aqueous methylcellulose solutions. Macromolecules 46, 300–309 (2012)

    Google Scholar 

  55. Hwang, M.J., Joo, M.K., Choi, B.G., Park, M.H., Hamley, I.W., Jeong, B.: Multiple sol-gel transitions of PEG-PCL-PEG triblock copolymer aqueous solution. Macromol. Rapid Commun. 31, 2064–2069 (2010)

    CAS  Google Scholar 

  56. Hwang, M.J., Suh, J.M., Bae, Y.H., Kim, S.W., Jeong, B.: Caprolactonic poloxamer analog: PEG-PCL-PEG. Biomacromolecules 6, 885–890 (2005)

    CAS  Google Scholar 

  57. Bae, S.J., Joo, M.K., Jeong, Y., Kim, S.W., Lee, W.K., Sohn, Y.S., et al.: Gelation behavior of poly(ethylene glycol) and polycaprolactone triblock and multiblock copolymer aqueous solutions. Macromolecules 39, 4873–4879 (2006)

    CAS  Google Scholar 

  58. Bae, S.J., Suh, J.M., Sohn, Y.S., Bae, Y.H., Kim, S.W., Jeong, B.: Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions. Macromolecules 38, 5260–5265 (2005)

    CAS  Google Scholar 

  59. Chung, Y.M., Simmons, K.L., Gutowska, A., Jeong, B.: Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules 3, 511–516 (2002)

    CAS  Google Scholar 

  60. Jeong, B., Wang, L.Q., Gutowska, A.: Biodegradable thermoreversible gelling PLGA-g-PEG copolymers. Chem. Commun. 16, 1516–1517 (2001)

    Google Scholar 

  61. Jeong, B., Windisch, C.F., Park, M.J., Sohn, Y.S., Gutowska, A., Char, K.: Phase transition of the PLGA-g-PEG copolymer aqueous solutions. J. Phys. Chem. B 107, 10032–10039 (2003)

    CAS  Google Scholar 

  62. Tarasevich, B.J., Gutowska, A., Li, X.S., Jeong, B.M.: The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels. J. Biomed. Mater. Res., Part A 89A, 248–254 (2009)

    CAS  Google Scholar 

  63. Jeong, B., Bae, Y.H., Kim, S.W.: Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids Surf., B 16, 185–193 (1999)

    CAS  Google Scholar 

  64. Jeong, B., Bae, Y.H., Kim, S.W.: Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32, 7064–7069 (1999)

    CAS  Google Scholar 

  65. Jeong, B., Bae, Y.H., Kim, S.W.: In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J. Biomed. Mater. Res. 50, 171–177 (2000)

    CAS  Google Scholar 

  66. Jeong, B., Bae, Y.H., Kim, S.W.: Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J. Controlled Release 63, 155–163 (2000)

    CAS  Google Scholar 

  67. Jeong, B., Kibbey, M.R., Birnbaum, J.C., Won, Y.Y., Gutowska, A.: Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 33, 8317–8322 (2000)

    CAS  Google Scholar 

  68. Choi, S.W., Choi, S.Y., Jeong, B., Kim, S.W., Lee, D.S.: Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. II. J. Poly. Sci., Part A. Poly. Chem. 37, 2207–2218 (1999)

    CAS  Google Scholar 

  69. Joo, M.K., Sohn, Y.S., Jeong, B.: Stereoisomeric effect on reverse thermal gelation of poly(ethylene glycol)/poly(lactide) multiblock copolymer. Macromolecules 40, 5111–5115 (2007)

    CAS  Google Scholar 

  70. Jeong, Y., Joo, M.K., Bahk, K.H., Choi, Y.Y., Kim, H.T., Kim, W.K., et al.: Enzymatically degradable temperature-sensitive polypeptide as a new in situ gelling biomaterial. J. Controlled Release 137, 25–30 (2009)

    CAS  Google Scholar 

  71. Kang, E.Y., Yeon, B., Moon, H.J., Jeong, B.: PEG-L-PAF and PEG-D-PAF: Comparative Study on Thermogellation and Biodegradation. Macromolecules 45, 2007–2013 (2012)

    CAS  Google Scholar 

  72. Kim, E.H., Joo, M.K., Bahk, K.H., Park, M.H., Chi, B., Lee, Y.M., et al.: Reverse thermal gelation of PAF-PLX-PAF block copolymer aqueous solution. Biomacromolecules 10, 2476–2481 (2009)

    CAS  Google Scholar 

  73. Shinde, U.P., Joo, M.K., Moon, H.J., Jeong, B.: Sol-gel transition of PEG-PAF aqueous solution and its application for hGH sustained release. J. Mater. Chem. 22, 6072–6079 (2012)

    CAS  Google Scholar 

  74. Ho, A.K., Bromberg, L.E., Huibers, P.D.T., O’Connor, A.J., Perera, J.M., Stevens, G.W., et al.: Hydrophobic domains in thermogelling solutions of polyether-modified poly(acrylic acid). Langmuir 18, 3005–3013 (2002)

    CAS  Google Scholar 

  75. Cleary, J., Bromberg, L.E., Magner, E.: Diffusion and release of solutes in pluronic-g-poly(acrylic acid) hydrogels. Langmuir 19, 9162–9172 (2003)

    CAS  Google Scholar 

  76. Liu, W.G., Zhang, B.Q., Lu, W.W., Li, X.W., Zhu, D.W., De Yao, K., et al.: A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25, 3005–3012 (2004)

    CAS  Google Scholar 

  77. Kitazawa, Y., Ueki, T., Niitsuma, K., Imaizumi, S., Lodge, T.P., Watanabe, M.: Thermoreversible high-temperature gelation of an ionic liquid with poly(benzyl methacrylate-b-methyl methacrylate-b-benzyl methacrylate) triblock copolymer. Soft Matter 8, 8067–8074 (2013)

    Google Scholar 

  78. Abandansari, H.S., Aghaghafari, E., Nabid, M.R., Niknejad, H.: Preparation of injectable and thermoresponsive hydrogel based on penta-block copolymer with improved sol stability and mechanical properties. Polymer 54, 1329–1340 (2013)

    CAS  Google Scholar 

  79. Li, Z.Q., Guo, X.L., Matsushita, S., Guan, J.J.: Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials 32, 3220–3232 (2011)

    CAS  Google Scholar 

  80. Loh, X.J., Cheng, L.W.I., Li, J.: Micellization and thermogelation of poly(ether urethane)s comprising poly(ethylene glycol) and poly(propylene glycol). Modern Trends Polym. Sci. Epf 09, 161–169 (2010)

    Google Scholar 

  81. Loh, X.J., Goh, S.H., Li, J.: New biodegradable thermogelling copolymers having very low gelation concentrations. Biomacromolecules 8, 585–593 (2007)

    CAS  Google Scholar 

  82. Loh, X.J., Li, J.: Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert Opin. Ther. Pat. 17, 965–977 (2007)

    CAS  Google Scholar 

  83. Loh, X.J., Wang, X., Li, H.Z., Li, X., Li, J.: Compositional study and cytotoxicity of biodegradable poly(ester urethane)s consisting of poly [(R)-3-hydroxybutyrate] and poly(ethylene glycol). Mater. Sci. Eng., C. Biomimetic Supramol. Syst. 27, 267–273 (2007)

    CAS  Google Scholar 

  84. Loh, X.J., Tan, Y.X., Li, Z.Y., Teo, L.S., Goh, S.H., Li, J.: Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)—Thermodynamics of micellization and hydrolytic degradation. Biomaterials 29, 2164–2172 (2008)

    CAS  Google Scholar 

  85. Loh, X.J., Sng, K.B.C., Li, J.: Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials 29, 3185–3194 (2008)

    CAS  Google Scholar 

  86. Loh, X.J., Yee, B.J.H., Chia, F.S.: Sustained delivery of paclitaxel using thermogelling poly(PEG/PPG/PCL urethane)s for enhanced toxicity against cancer cells. J. Biomed. Mater. Res., Part A 100A, 2686–2694 (2012)

    CAS  Google Scholar 

  87. Loh, X.J., Vu, P.N.N., Kuo, N.Y., Li, J.: Encapsulation of basic fibroblast growth factor in thermogelling copolymers preserves its bioactivity. J. Mater. Chem. 21, 2246–2254 (2011)

    CAS  Google Scholar 

  88. Nguyen, V.P.N., Kuo, N.Y., Loh, X.J.: New biocompatible thermogelling copolymers containing ethylene-butylene segments exhibiting very low gelation concentrations. Soft Matter 7, 2150–2159 (2011)

    CAS  Google Scholar 

  89. Loh, X.J., Guerin, W., Guillaume, S.M.: Sustained delivery of doxorubicin from thermogelling poly(PEG/PPG/PTMC urethane)s for effective eradication of cancer cells. J. Mater. Chem. 22, 21249–21256 (2012)

    CAS  Google Scholar 

  90. Park, D., Wu, W., Wang, Y.D.: A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials 32, 777–786 (2011)

    CAS  Google Scholar 

  91. Schexnailder, P., Schmidt, G.: Nanocomposite polymer hydrogels. Colloid Polym. Sci. 287, 1–11 (2009)

    CAS  Google Scholar 

  92. Skrabalak, S.E., Chen, J., Au, L., Lu, X., Li, X., Xia, Y.: Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184 (2007)

    CAS  Google Scholar 

  93. Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C.M., et al.: Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008)

    CAS  Google Scholar 

  94. Ye, E., Win, K.Y., Tan, H.R., Lin, M., Teng, C.P., Mlayah, A., et al.: Plasmonic gold nanocrosses with multidirectional excitation and strong photothermal effect. J. Am. Chem. Soc. 133, 8506–8509 (2011)

    CAS  Google Scholar 

  95. Sershen, S.R., Westcott, S.L., Halas, N.J., West, J.L.: Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000)

    CAS  Google Scholar 

  96. Yan, B., Boyer, J.-C., Habault, D., Branda, N.R., Zhao, Y.: Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134, 16558–16561 (2012)

    CAS  Google Scholar 

  97. Hoare, T., Santamaria, J., Goya, G.F., Irusta, S., Lin, D., Lau, S., et al.: A Magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9, 3651–3657 (2009)

    CAS  Google Scholar 

  98. Macaya, D.J., Hayakawa, K., Arai, K., Spector, M.: Astrocyte infiltration into injectable collagen-based hydrogels containing FGF-2 to treat spinal cord injury. Biomaterials 34, 3591–3602 (2013)

    CAS  Google Scholar 

  99. Jeng, L., Olsen, B.R., Spector, M.: Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater. 8, 2203–2212 (2012)

    CAS  Google Scholar 

  100. Lim, T.C., Toh, W.S., Wang, L.-S., Kurisawa, M., Spector, M.: The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials 33, 3446–3455 (2012)

    CAS  Google Scholar 

  101. Lim, T.C., Rokkappanavar, S., Toh, W.S., Wang, L.-S., Kurisawa, M., Spector, M.: Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1α release and compatible structural support. FASEB J. 27, 1023–1033 (2013)

    CAS  Google Scholar 

  102. Wang, L.-S., Du, C., Toh, W.S., Wan, A.C.A., Gao, S.J., Kurisawa, M.: Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 35, 2207–2217 (2014)

    CAS  Google Scholar 

  103. Ho, S.T.B., Cool, S.M., Hui, J.H., Hutmacher, D.W.: The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells. Biomaterials 31, 38–47 (2010)

    CAS  Google Scholar 

  104. Sun, G., Zhang, X., Shen, Y.-I., Sebastian, R., Dickinson, L.E., Fox-Talbot, K., et al.: Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. 108, 20976–20981 (2011)

    CAS  Google Scholar 

  105. Toh, W.S., Lim, T.C., Kurisawa, M., Spector, M.: Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials 33, 3835–3845 (2012)

    CAS  Google Scholar 

  106. Toh, W.S., Lee, E.H., Guo, X.-M., Chan, J.K.Y., Yeow, C.H., Choo, A.B., et al.: Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31, 6968–6980 (2010)

    CAS  Google Scholar 

  107. Gerecht, S., Burdick, J.A., Ferreira, L.S., Townsend, S.A., Langer, R., Vunjak-Novakovic, G.: Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. 104, 11298–11303 (2007)

    CAS  Google Scholar 

  108. Wang, S., Taraballi, F., Tan, L., Ng, K.: Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Res. 347, 795–802 (2012)

    CAS  Google Scholar 

  109. Sawkins, M.J., Bowen, W., Dhadda, P., Markides, H., Sidney, L.E., Taylor, A.J., et al.: Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater. 9, 7865–7873 (2013)

    CAS  Google Scholar 

  110. Young, D.A., Ibrahim, D.O., Hu, D., Christman, K.L.: Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomater. 7, 1040–1049 (2011)

    CAS  Google Scholar 

  111. Roberts, J.J., Elder, R.M., Neumann, A.J., Jayaraman, A., Bryant, S.J.: Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels. Biomacromolecules 15(4), 1132–1141 (2014)

    CAS  Google Scholar 

  112. Roberts, J.J., Nicodemus, G.D., Giunta, S., Bryant, S.J.: Incorporation of biomimetic matrix molecules in PEG hydrogels enhances matrix deposition and reduces load-induced loss of chondrocyte-secreted matrix. J. Biomed. Mater. Res., Part A 97A, 281–291 (2011)

    CAS  Google Scholar 

  113. Lee, S.T., Yun, J.I., van der Vlies, A.J., Kontos, S., Jang, M., Gong, S.P., et al.: Long-term maintenance of mouse embryonic stem cell pluripotency by manipulating integrin signaling within 3D scaffolds without active Stat3. Biomaterials 33, 8934–8942 (2012)

    CAS  Google Scholar 

  114. Lee, S.T., Yun, J.I., Jo, Y.S., Mochizuki, M., van der Vlies, A.J., Kontos, S., et al.: Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31, 1219–1226 (2010)

    CAS  Google Scholar 

  115. Folkman, J., Moscona, A.: Role of cell shape in growth control. Nature 273, 345–349 (1978)

    CAS  Google Scholar 

  116. McWhorter, F.Y., Wang, T., Nguyen, P., Chung, T., Liu, W.F.: Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. 110, 17253–17258 (2013)

    CAS  Google Scholar 

  117. Zhang, Z., Messana, J., Hwang, N.S.H., Elisseeff, J.H.: Reorganization of actin filaments enhances chondrogenic differentiation of cells derived from murine embryonic stem cells. Biochem. Biophys. Res. Commun. 348, 421–427 (2006)

    CAS  Google Scholar 

  118. Wang, L.-S., Boulaire, J., Chan, P.P.Y., Chung, J.E., Kurisawa, M.: The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31, 8608–8616 (2010)

    CAS  Google Scholar 

  119. Lee, J., Abdeen, A.A., Zhang, D., Kilian, K.A.: Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34, 8140–8148 (2013)

    CAS  Google Scholar 

  120. Loh, X.J., Peh, P., Liao, S., Sng, C., Li, J.: Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J. Controlled Release 143, 175–182 (2010)

    CAS  Google Scholar 

  121. Ji, Y., Ghosh, K., Li, B., Sokolov, J.C., Clark, R.A.F., Rafailovich, M.H.: Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Macromol. Biosci. 6, 811–817 (2006)

    CAS  Google Scholar 

  122. Yamada, M., Utoh, R., Ohashi, K., Tatsumi, K., Yamato, M., Okano, T., et al.: Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33, 8304–8315 (2012)

    CAS  Google Scholar 

  123. Lau, T.T., Ho, L.W., Wang, D.-A.: Hepatogenesis of murine induced pluripotent stem cells in 3D micro-cavitary hydrogel system for liver regeneration. Biomaterials 34, 6659–6669 (2013)

    CAS  Google Scholar 

  124. Bellan, L.M., Pearsall, M., Cropek, D.M., Langer, R.: A 3D interconnected microchannel network formed in gelatin by sacrificial shellac microfibers. Adv. Mater. 24, 5187–5191 (2012)

    CAS  Google Scholar 

  125. Al-Abboodi, A., Fu, J., Doran, P.M., Tan, T.T.Y., Chan, P.P.Y.: Injectable 3D Hydrogel Scaffold with Tailorable Porosity Post-Implantation. Adv. Healthc. Mater. 3(5), 725–736 (2013)

    Google Scholar 

  126. Discher, D.E., Mooney, D.J., Zandstra, P.W.: Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009)

    CAS  Google Scholar 

  127. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    CAS  Google Scholar 

  128. Leipzig, N.D., Shoichet, M.S.: The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 6867–6878 (2009)

    CAS  Google Scholar 

  129. Chowdhury, F., Li, Y., Poh, Y.-C., Yokohama-Tamaki, T., Wang, N., Tanaka, T.S.: Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5, e15655 (2010)

    CAS  Google Scholar 

  130. Gilbert, P.M., Havenstrite, K.L., Magnusson, K.E.G., Sacco, A., Leonardi, N.A., Kraft, P., et al.: Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010)

    CAS  Google Scholar 

  131. Anderson, S.B., Lin, C.-C., Kuntzler, D.V., Anseth, K.S.: The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32, 3564–3574 (2011)

    CAS  Google Scholar 

  132. Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S., Seliktar, D.: Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743–4752 (2009)

    CAS  Google Scholar 

  133. Lau, T.T., Wang, D.-A.: Bioresponsive hydrogel scaffolding systems for 3D constructions in tissue engineering and regenerative medicine. Nanomedicine 8, 655–668 (2013)

    CAS  Google Scholar 

  134. Brizzi, M.F., Tarone, G., Defilippi, P.: Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr. Opin. Cell Biol. 24, 645–651 (2012)

    CAS  Google Scholar 

  135. Woo, E.: Adverse events after recombinant human bmp2 in nonspinal orthopaedic procedures. Clin. Orthop. Relat. Res. 471, 1707–1711 (2013)

    Google Scholar 

  136. Bhakta, G., Rai, B., Lim, Z.X.H., Hui, J.H., Stein, G.S., van Wijnen, A.J., et al.: Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2. Biomaterials 33, 6113–6122 (2012)

    CAS  Google Scholar 

  137. Choi, Y.J., Lee, J.Y., Park, J.H., Park, J.B., Suh, J.S., Choi, Y.S., et al.: The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials 31, 7226–7238 (2010)

    CAS  Google Scholar 

  138. Wylie, R.G., Ahsan, S., Aizawa, Y., Maxwell, K.L., Morshead, C.M., Shoichet, M.S.: Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011)

    CAS  Google Scholar 

  139. Song, H., Stevens, C.F., Gage, F.H.: Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002)

    CAS  Google Scholar 

  140. Fu, X., Toh, W.S., Liu, H., Lu, K., Li, M., Hande, M.P., et al.: Autologous feeder cells from embryoid body outgrowth support the long-term growth of human embryonic stem cells more effectively than those from direct differentiation. Tissue Eng., Part C. Methods 16, 719–733 (2009)

    Google Scholar 

  141. Fu, X., Toh, W.S., Liu, H., Lu, K., Li, M., Cao, T.: Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng., Part C. Methods 17, 927–937 (2011)

    Google Scholar 

  142. Peng, Y., Bocker, M.T., Holm, J., Toh, W.S., Hughes, C.S., Kidwai, F., et al.: Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells. J. Tissue Eng. Regen. Med. 6, e74–e86 (2012)

    CAS  Google Scholar 

  143. Bian, L., Zhai, D.Y., Mauck, R.L., Burdick, J.A.: Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng. Part A 17, 1137–1145 (2010)

    Google Scholar 

  144. Park, J.S., Yang, H.N., Woo, D.G., Kim, H., Na, K., Park, K.-H.: Multi-lineage differentiation of hMSCs encapsulated in thermo-reversible hydrogel using a co-culture system with differentiated cells. Biomaterials 31, 7275–7287 (2010)

    CAS  Google Scholar 

  145. Trkov, S., Eng, G., Di Liddo, R., Parnigotto, P.P., Vunjak-Novakovic, G.: Micropatterned three-dimensional hydrogel system to study human endothelial–mesenchymal stem cell interactions. J. Tissue Eng. Regen. Med. 4, 205–215 (2010)

    CAS  Google Scholar 

  146. Silva, N.A., Cooke, M.J., Tam, R.Y., Sousa, N., Salgado, A.J., Reis, R.L., et al.: The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials 33, 6345–6354 (2012)

    CAS  Google Scholar 

  147. Chen, Y.-C., Lin, R.-Z., Qi, H., Yang, Y., Bae, H., Melero-Martin, J.M., et al.: Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22, 2027–2039 (2012)

    CAS  Google Scholar 

  148. Hwang, Y.-S., Chung, B.G., Ortmann, D., Hattori, N., Moeller, H.-C., Khademhosseini, A.: Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. 106, 16978–16983 (2009)

    CAS  Google Scholar 

  149. Hsieh, T.M., Benjamin Ng, C.W., Narayanan, K., Wan, A.C.A., Ying, J.Y.: Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials 31, 7648–7652 (2010)

    CAS  Google Scholar 

  150. Gauvin, R., Chen, Y.-C., Lee, J.W., Soman, P., Zorlutuna, P., Nichol, J.W., et al.: Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012)

    CAS  Google Scholar 

  151. Tsang, V.L., Chen, A.A., Cho, L.M., Jadin, K.D., Sah, R.L., DeLong, S., et al.: Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 21, 790–801 (2007)

    CAS  Google Scholar 

  152. Lee, S.-H., Moon, J.J., West, J.L.: Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962–2968 (2008)

    CAS  Google Scholar 

  153. Albrecht, D.R., Underhill, G.H., Wassermann, T.B., Sah, R.L., Bhatia, S.N.: Probing the role of multicellular organization in three-dimensional microenvironments. Nat Meth. 3, 369–375 (2006)

    CAS  Google Scholar 

  154. Ling, Y., Rubin, J., Deng, Y., Huang, C., Demirci, U., Karp, J.M., et al.: A cell-laden microfluidic hydrogel. Lab Chip 7, 756–762 (2007)

    CAS  Google Scholar 

  155. Lii, J., Hsu, W.-J., Parsa, H., Das, A., Rouse, R., Sia, S.K.: Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal. Chem. 80, 3640–3647 (2008)

    CAS  Google Scholar 

  156. Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.-H.T., Cohen, D.M., et al.: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012)

    CAS  Google Scholar 

  157. Park, Y.D., Tirelli, N., Hubbell, J.A.: Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials 24, 893–900 (2003)

    CAS  Google Scholar 

  158. Bryant, S.J., Davis-Arehart, K.A., Luo, N., Shoemaker, R.K., Arthur, J.A., Anseth, K.S.: Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules 37, 6726–6733 (2004)

    CAS  Google Scholar 

  159. Nichol, J.W., Koshy, S.T., Bae, H., Hwang, C.M., Yamanlar, S., Khademhosseini, A.: Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010)

    CAS  Google Scholar 

  160. Song, Y., Lin, R., Montesano, G., Durmus, N., Lee, G., Yoo, S.-S., et al.: Engineered 3D tissue models for cell-laden microfluidic channels. Anal. Bioanal. Chem. 395, 185–193 (2009)

    CAS  Google Scholar 

  161. Figallo, E., Cannizzaro, C., Gerecht, S., Burdick, J.A., Langer, R., Elvassore, N., et al.: Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7, 710–719 (2007)

    CAS  Google Scholar 

  162. Tuleuova, N., Lee, J.Y., Lee, J., Ramanculov, E., Zern, M.A., Revzin, A.: Using growth factor arrays and micropatterned co-cultures to induce hepatic differentiation of embryonic stem cells. Biomaterials 31, 9221–9231 (2010)

    CAS  Google Scholar 

  163. Qi, H., Du, Y., Wang, L., Kaji, H., Bae, H., Khademhosseini, A.: Patterned differentiation of individual embryoid bodies in spatially organized 3D hybrid microgels. Adv. Mater. 22, 5276–5281 (2010)

    CAS  Google Scholar 

  164. Khetan, S., Burdick, J.A.: Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31, 8228–8234 (2010)

    CAS  Google Scholar 

  165. Shastri, V.P.: In vivo engineering of tissues: biological considerations, challenges, strategies, and future directions. Adv. Mater. 21, 3246–3254 (2009)

    CAS  Google Scholar 

  166. Mosiewicz, K.A., Kolb, L., van der Vlies, A.J., Martino, M.M., Lienemann, P.S., Hubbell, J.A., et al.: In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12, 1072–1078 (2013)

    CAS  Google Scholar 

  167. Nguyen, L.H., Kudva, A.K., Saxena, N.S., Roy, K.: Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 32, 6946–6952 (2011)

    CAS  Google Scholar 

  168. Gillette, B.M., Rossen, N.S., Das, N., Leong, D., Wang, M., Dugar, A., et al.: Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials 32, 8067–8076 (2011)

    CAS  Google Scholar 

  169. Lee, H.J., Yu, C., Chansakul, T., Varghese, S., Hwang, N.S., Elisseeff, J.H.: Enhanced chondrogenic differentiation of embryonic stem cells by coculture with hepatic cells. Stem Cells Dev. 17, 555–564 (2008)

    CAS  Google Scholar 

  170. Natesan, S., Zhang, G., Baer, D.G., Walters, T.J., Christy, R.J., Suggs, L.J.: A bilayer construct controls adipose-derived stem cell differentiation into endothelial cells and pericytes without growth factor stimulation. Tissue Eng. Part A 17, 941–953 (2010)

    Google Scholar 

  171. Li, J., Shu, Y., Hao, T., Wang, Y., Qian, Y., Duan, C., et al.: A chitosan–glutathione based injectable hydrogel for suppression of oxidative stress damage in cardiomyocytes. Biomaterials 34, 9071–9081 (2013)

    CAS  Google Scholar 

  172. Cheng, Y.-H., Yang, S.-H., Liu, C.-C., Gefen, A., Lin, F.-H.: Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr. Polym. 92, 1512–1519 (2013)

    CAS  Google Scholar 

  173. Ouimet, M.A., Griffin, J., Carbone-Howell, A.L., Wu, W.-H., Stebbins, N.D., Di, R., et al.: Biodegradable ferulic acid-containing poly(anhydride-ester): degradation products with controlled release and sustained antioxidant activity. Biomacromolecules 14, 854–861 (2013)

    CAS  Google Scholar 

  174. Su, J., Hu, B.-H., Lowe Jr, W.L., Kaufman, D.B., Messersmith, P.B.: Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials 31, 308–314 (2010)

    CAS  Google Scholar 

  175. Wong, V.W., Rustad, K.C., Glotzbach, J.P., Sorkin, M., Inayathullah, M., Major, M.R., et al.: Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol. Biosci. 11, 1458–1466 (2011)

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National University of Singapore, National University Healthcare System, Ministry of Education and A*STAR SERC Personal Care IAF.

Disclosure

The author indicates no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Seong Toh or Xian Jun Loh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Toh, W.S., Toh, YC., Loh, X.J. (2015). Hydrogels for Stem Cell Fate Control and Delivery in Regenerative Medicine. In: Loh, X. (eds) In-Situ Gelling Polymers. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-287-152-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-152-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-151-0

  • Online ISBN: 978-981-287-152-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics