Skip to main content

Optimization and Design of Efficient D Flip-Flops Using QCA Technology

  • Conference paper
  • First Online:
Proceedings of International Conference on Recent Innovations in Computing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1001))

  • 311 Accesses

Abstract

Digital circuits designed at a nano-scale with the growing use of technologies like quantum-dot cellular automata (QCA) are beneficial over the orthodox CMOS regime in context with certain parameters like lower power consumption, high speed and density of the device. This paper presents a literature survey of the D flip-flop designs in QCA. This is followed by proposed optimized circuits for these existing D flip-flop designs. The comparison is done between existing designs in literature and their optimized designs on the basis of parameters like number of cells used, area occupied by the cells and latency. After analysing the performance of the proposed design, it is found that it achieves performance improvements up to 62.71% over previous designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Compano R, Molenkamp L, Paul D (2000) Roadmap for nanoelectronics. European Commission IST Programme. Future and Emerging Technologies, pp 1–81

    Google Scholar 

  2. Wolkow RA, Livadaru L, Pitters J, Taucer M, Piva P, Salomons M, Cloutier M, Martins BV (2014) Silicon atomic quantum dots enable beyond-CMOS electronics. In: Field-coupled nanocomputing. Springer, pp 33–58

    Google Scholar 

  3. Naz SF, Ahmed S, Ko SB, Shah AP, Sharma S (2022) Fields: QCA based cost efficient coplanar 1 × 4 RAM design with set/reset ability. Int J Numer Model Electron Netw Dev 35:e2946

    Google Scholar 

  4. Naz SF, Shah AP, Ahmed S, Girard P, Waltl M (2021) Design of fault-tolerant and thermally stable XOR gate in quantum dot cellular automata. In: 2021 IEEE European test symposium (ETS). IEEE, pp 1–2

    Google Scholar 

  5. Ahmed S, Baba MI, Bhat SM, Manzoor I, Nafees N, Ko S-B (2020) Design of reversible universal and multifunctional gate-based 1-bit full adder and full subtractor in quantum-dot cellular automata nanocomputing. J Nanophotonics 14:036002

    Article  Google Scholar 

  6. Ganesh E, Kishore L, Rangachar MJ (2008) Implementation of Quantum cellular automata combinational and sequential circuits using Majority logic reduction method. Int J Nanotechnol Appl 2:89–106

    Google Scholar 

  7. Raj M, Ahmed S, Gopalakrishnan L (2020) Subtractor circuits using different wire crossing techniques in quantum-dot cellular automata. J Nanophotonics 14:026007

    Article  Google Scholar 

  8. Safoev N, Ahmed S, Tashev K, Naz SF (2021) Design of fault tolerant bifunctional parity generator and scalable code converters based on QCA technology. Int J Inform Technol 1–8

    Google Scholar 

  9. Bilal B, Ahmed S, Kakkar V (2017) Multifunction reversbile logic gate: logic synthesis and design implementation in QCA. In: 2017 international conference on computing, communication and automation (ICCCA). IEEE, pp 1385–1390

    Google Scholar 

  10. Manzoor I, Nafees N, Baba MI, Bhat SM, Puri V, Ahmed S (2019) Logic design and modeling of an ultraefficient 3×3 reversible gate for nanoscale applications. In: International conference on intelligent computing and smart communication 2019. Springer, pp 1433–1442

    Google Scholar 

  11. Nafees N, Manzoor I, Baba MI, Bhat SM, Puri V, Ahmed S (2019) Modeling and logic synthesis of multifunctional and universal 3×3 reversible gate for nanoscale applications. In: International conference on intelligent computing and smart communication 2019. Springer, pp 1423–1431

    Google Scholar 

  12. Yaqoob S, Ahmed S, Naz SF, Bashir S, Sharma S (2021) Design of efficient N-bit shift register using optimized D flip flop in quantum dot cellular automata technology. IET Quantum Commun 2:32–41

    Article  Google Scholar 

  13. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85:541–557

    Article  Google Scholar 

  14. Lent CS, Tougaw PDJ (1993) Lines of interacting quantum‐dot cells: a binary wire. J Appl Phys 74:6227–6233

    Google Scholar 

  15. Tougaw PD, Lent CSJ (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825

    Google Scholar 

  16. Ahmad F, Ahmed S, Kakkar V, Bhat GM, Bahar AN, Wani S (2018) Modular design of ultra-efficient reversible full adder-subtractor in QCA with power dissipation analysis. Int J Theor Phys 57:2863–2880

    Article  MATH  Google Scholar 

  17. Ahmed S, Naz SF, Bhat SM (2020) Design of quantum-dot cellular automata technology based cost-efficient polar encoder for nanocommunication systems. Int J Commun Syst 33:e4630

    Google Scholar 

  18. Ahmed S, Naz SF, Sharma S, Ko SB (2021) Design of quantum-dot cellular automata-based communication system using modular N-bit binary to gray and gray to binary converters. Int J Commun Syst 34:e4702

    Article  Google Scholar 

  19. Ajitha D, Ahmed S, Ahmad F, Rajini G (2021) Design of area efficient shift register and scan flip-flop based on QCA technology. In: 2021 international conference on emerging smart computing and informatics (ESCI). IEEE, pp 716–719

    Google Scholar 

  20. Bilal B, Ahmed S, Kakkar V (2018) An insight into beyond CMOS next generation computing using quantum-dot cellular automata nanotechnology. Int J Eng Manuf 8:25

    Google Scholar 

  21. Bilal B, Ahmed S, Kakkar V (2018) Quantum dot cellular automata: a new paradigm for digital design. Int J Nanoelectron Mater 11:87–98

    Google Scholar 

  22. Senthilnathan S, Kumaravel SJC (2020) Power-efficient implementation of pseudo-random number generator using quantum dot cellular automata-based D flip flop. Comput Electr Eng 85:106658

    Article  Google Scholar 

  23. Naz SF, Ahmed S, Sharma S, Ahmad F, Ajitha D (2021) Fredkin gate based energy efficient reversible D flip flop design in quantum dot cellular automata. Mater Today Proc 46:5248–5255

    Article  Google Scholar 

  24. Sasamal TN, Singh AK, Ghanekar UJ (2019) Systems: design and implementation of QCA D-flip-flops and RAM cell using majority gates. J Circ Syst Comput 28:1950079

    Google Scholar 

  25. Huang J, Momenzadeh M, Lombardi F (2007) Design of sequential circuits by quantum-dot cellular automata. Microelectron J 38:525–537

    Article  Google Scholar 

  26. Alamdar H, Ardeshir G, Gholami M (2020) Phase-frequency detector in QCA nanotechnology using novel flip-flop with reset terminal. Int Nano Lett 10:111–118

    Article  Google Scholar 

  27. Binaei R, Gholami M (2019) Design of multiplexer-based D flip-flop with set and reset ability in quantum dot cellular automata nanotechnology. Int J Theor Phys 58:687–699

    Article  Google Scholar 

  28. Purkayastha T, De D, Chattopadhyay T (2018) Universal shift register implementation using quantum dot cellular automata. Ain Shams Eng J 9:291–310

    Article  Google Scholar 

  29. Alamdar H, Ardeshir G, Gholami M (2021) Novel quantum-dot cellular automata implementation of flip-flop and phase-frequency detector based on nand-nor-inverter gates. Int J Circ Theor Appl 49:196–212

    Article  Google Scholar 

  30. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3:26–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhaib Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nafees, N., Ahmed, S., Kakkar, V. (2023). Optimization and Design of Efficient D Flip-Flops Using QCA Technology. In: Singh, Y., Singh, P.K., Kolekar, M.H., Kar, A.K., Gonçalves, P.J.S. (eds) Proceedings of International Conference on Recent Innovations in Computing. Lecture Notes in Electrical Engineering, vol 1001. Springer, Singapore. https://doi.org/10.1007/978-981-19-9876-8_23

Download citation

Publish with us

Policies and ethics