Skip to main content

Immunotherapy: Targeting Cancer Cells

  • Chapter
  • First Online:
Targeted Cancer Therapy in Biomedical Engineering

Abstract

Cancer has been a complex disease, and for many decades, research has been going on for designing a novel strategy for the cure and successful treatment; promising results and efforts are required. Although remarkable progress has been made in cancer medicine research concerning more efficient, specific, and less invasive modalities of cancer treatments recently, currently targeted therapy is one of the approaches aimed at targeting a particular location linked to cancer, such as tumor microenvironment or intracellular organelles, without affecting its normal surrounding and therefore benefits by increasing the specificity of the treatment. Targeted therapies are now one of the most promising therapies and have been embarking on their importance in oncological research and clinical oncology due to the revolution in the treatment of cancer in terms of diagnosis and the use of sophisticated diagnostic and molecular characterization technologies due to the advent of targeted therapy and immunotherapy. The advantage of targeted therapies is that it promotes effective dendritic cell (DC) maturation, T cell priming, activation, and differentiation into memory T cells that are long-lived, and thereby suggest combining cancer vaccines along with targeted therapies for boosted immune response and functioning of effector T cell. In this chapter, aspects of immunotherapy as a strategy for cancer therapy will be reviewed by analyzing the different approaches of immunotherapy and the upcoming promising therapies for cancer generally as well as for specific cancers while attempting to understand the latest developments in using immunotherapy as a novel strategy for cancer cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACT:

Adoptive cell transfer

APC:

Antigen presenting cell

CAR:

Chimeric antigen receptor

CD:

Cluster of differentiation

CDR:

Complementarity determining regions

CGA:

Cancer germline antigens

cHL:

Classical Hodgkin lymphoma

CRC:

Colorectal cancer

CTLA-4:

Cytotoxic T-lymphocyte-associated antigen 4

FDA:

Food and Drug administration

HLA:

Human leukocyte antigen

HNSCC:

Head and neck squamous cell carcinoma

HSCT:

Hematopoietic stem cell transplants

ICI:

Immune checkpoint Inhibitors

IL:

Interleukin

MCC:

Merkel cell carcinoma

MHC:

Major histocompatibility complex

NIH:

National Institute of Health

NK:

Natural killer cells

PBL:

Peripheral blood lymphocytes

PD-1:

Programmed death 1 receptor

PD-L1:

Programmed death receptor ligand 1

PD-L2:

Programmed death receptor ligand 2

Ras:

Rat adenosarcoma

RCC:

Renal cell carcinoma

TAA:

Tumor associated antigen

TCR:

T cell receptor

TIL:

Tumour infiltrating lymphocytes

TME:

Tumour microenvironment

UC:

Urothelial cancer

VAV:

Vaccinia viru

References

  1. M.R. Stratton, P.J. Campbell, P.A. Futreal, The cancer genome. Nature 458, 719–724 (2009)

    Google Scholar 

  2. O. Podlaha, M. Riester, S. De, F. Michor, Evolution of the cancer genome. Trends Genet. 28, 155–163 (2012)

    Google Scholar 

  3. A.M. Tsimberidou, E. Fountzilas, M. Nikanjam, R. Kurzrock, Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 86, 102019 (2020). https://doi.org/10.1016/j.ctrv.2020.102019

  4. J. Zugazagoitia, C. Guedes, S. Ponce, I. Ferrer, S. Molina-Pinelo, L. Paz-Ares, Current challenges in cancer treatment. Clin Ther. 38(7), 1551–1566 (2016). https://doi.org/10.1016/j.clinthera.2016.03.026

    Article  Google Scholar 

  5. J.S. O’Donnell, M.W.L. Teng, M.J. Smyth, Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16(3), 151–167 (2019). https://doi.org/10.1038/s41571-018-0142-8

    Article  Google Scholar 

  6. B. Thomas, D. Coates, V. Tzeng, L. Baehner, A. Boxer, Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood 68, 493–497

    Google Scholar 

  7. S. Ahmed, K. Rai, Interferon in the treatment of hairy-cell leukemia. Best Pract. Res. Clin. Haematol. 16, 69–81 (2003)

    Google Scholar 

  8. S.A. Rosenberg, IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014)

    Google Scholar 

  9. Y. Zhang, Z. Zhang, The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17(8), 807–821 (2020). https://doi.org/10.1038/s41423-020-0488-6

  10. R.S. Riley, C.H. June, R. Langer, M.J. Mitchell, Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18(3), 175–196 (2019). https://doi.org/10.1038/s41573-018-0006-z.PMID:30622344;PMCID:PMC6410566

    Article  Google Scholar 

  11. J. Couzin-Frankel, Cancer immunotherapy. Science 342, 1432–1433 (2013)

    Google Scholar 

  12. J.L. Adams, J. Smothers, R. Srinivasan, A. Hoos, Big opportunities for small molecules in immuno-oncology. Nat. Rev. Drug Discov. 14, 603–622 (2015)

    Google Scholar 

  13. A. Hoos, C. Britten, The immuno-oncology framework: enabling a new era of cancer therapy. Oncoimmunology. 1, 334–339 (2012)

    Google Scholar 

  14. L. Bejarano, M.J.C. Jordāo, J.A. Joyce, Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11(4), 933–959 (2021). https://doi.org/10.1158/2159-8290.CD-20-1808

    Article  Google Scholar 

  15. J.A. Trapani, P.K. Darcy, Immunotherapy of cancer. Aust. Fam. Phys. 46(4), 194–199 (2017)

    Google Scholar 

  16. V. Velcheti, K. Schalper, Basic overview of current immunotherapy approaches in cancer. Am. Soc. Clin. Oncol. Educ. Book 35, 298–308 (2016). https://doi.org/10.1200/EDBK_156572

    Article  Google Scholar 

  17. E. Ileana, S. Champiat, J.C. Soria, Immune-checkpoints: les nouvelles immunothérapies anticancéreuses [Immune-checkpoints: the new anti-cancer immunotherapies]. Bull Cancer 100(6), 601–610 (2013) (French). https://doi.org/10.1684/bdc.2013.1771

  18. M.S. Lawrence, P. Stojanov, P. Polak, G.V. Kryukov, K. Cibulskis, A. Sivachenko et al., Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013). https://doi.org/10.1038/nature12213

    Article  Google Scholar 

  19. N.D. Pennock, J.T. White, E.W. Cross, E.E. Cheney, B.A. Tamburini, R.M. Kedl, T cell responses: naïve to memory and everything in between. Adv. Physiol. Educ. 37(4), 273–283 (2013). https://doi.org/10.1152/advan.00066.2013

    Article  Google Scholar 

  20. K.E. De Visser, A. Eichten, L.M. Coussens, Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6(1), 24–37 (2006)

    Article  Google Scholar 

  21. O.J. Finn, Cancer immunology. New England J. Med. 358(25), 2704–2715 (2008)

    Google Scholar 

  22. G. D’Errico, H.L. Machado, B. Sainz, A current perspective on cancer immune therapy: step-by-step approach to constructing the magic bullet. Clin. Transl. Med. 6(1), 3 (2017)

    Google Scholar 

  23. J. Koury, M. Lucero, C. Cato, L. Chang, J. Geiger, D. Henry, J. Hernandez, F. Hung, P. Kaur, G. Teskey, A. Tran, Immunotherapies: exploiting the immune system for cancer treatment. J. Immunol. Res. (2018)

    Google Scholar 

  24. D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012)

    Google Scholar 

  25. K. Bardhan, T. Anagnostou, V.A. Boussiotis, The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol. 7, 550 (2016)

    Google Scholar 

  26. M. Sperk, R.V. Domselaar, U. Neogi, Immune checkpoints as the immune system regulators and potential biomarkers in HIV-1 infection. Int. J. Mol. Sci. 19(7), 2000 (2018)

    Article  Google Scholar 

  27. Y.P. de Coaña, A. Choudhury, R. Kiessling, Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol. Med. 21(8), 482–491 (2015)

    Article  Google Scholar 

  28. O.S. Qureshi, Y. Zheng, K. Nakamura, K. Attridge, C. Manzotti, E.M. Schmidt et al., Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029), 600–603 (2011). https://doi.org/10.1126/science.1202947

    Article  Google Scholar 

  29. R. Jenkins, D. Barbie, K. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118, 9–16 (2018). https://doi.org/10.1038/bjc.2017.434

    Article  Google Scholar 

  30. P. Sharma, J.P. Allison, The future of immune checkpoint therapy. Science 348, 56–61 (2015)

    Google Scholar 

  31. M.F. Krummel, J.P. Allison, CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995)

    Google Scholar 

  32. L. Chen, Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004)

    Google Scholar 

  33. J.G. Egen, M.S. Kuhns, J.P. Allison, CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3(7), 611–618 (2002)

    Google Scholar 

  34. P.S. Linsley, J. Bradshaw, J. Greene et al., Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4, 535–543 (1996)

    Google Scholar 

  35. H. Schneider, M. Martin, F.A. Agarraberes et al., Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol. 163(4), 1868–1879 (1999)

    Google Scholar 

  36. D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012)

    Google Scholar 

  37. S. Qin, L. Xu, M. Yi et al., Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18, 155 (2019). https://doi.org/10.1186/s12943-019-1091-2

    Article  Google Scholar 

  38. E.I. Buchbinder, A. Desai, CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39(1), 98–106 (2016). https://doi.org/10.1097/COC.0000000000000239

  39. F. Liu, J. Huang, X. Liu et al., CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell. Int. 20, 7 (2020). https://doi.org/10.1186/s12935-019-1085-6

    Article  Google Scholar 

  40. J. Huang, F. Liu, Z. Liu, H. Tang, H. Wu, Q. Gong, J. Chen, Immune checkpoint in glioblastoma: promising and challenging. Front. Pharmacol. 8, 242 (2017)

    Google Scholar 

  41. Y. Liu, G. Zeng, Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J. Immunother. 35(4), 299 (2012)

    Google Scholar 

  42. A. Tang, T.A. Judge, B.J. Nickoloff, L.A. Turka, Suppression of murine allergic contact dermatitis by CTLA4Ig. Tolerance induction of Th2 responses requires additional blockade of CD40-ligand. J. Immunol. 157(1), 117–125 (1996)

    Google Scholar 

  43. K. Wing, Y. Onishi, P. Prieto-Martin, T. Yamaguchi, M. Miyara, Z. Fehervari et al., CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899), 271–275 (2008). https://doi.org/10.1126/science.1160062[PubMed][CrossRef][GoogleScholar]

    Article  Google Scholar 

  44. J.A. Seidel, A. Otsuka, K. Kabashima, Anti-PD-1 and Anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front. Oncol. 28(8), 86 (2018). https://doi.org/10.3389/fonc.2018.00086.PMID:29644214;PMCID:PMC5883082

    Article  Google Scholar 

  45. G.Q. Phan, J.C. Yang, R.M. Sherry, P. Hwu, S.L. Topalian, D.J. Schwartzentruber et al., Cancer regression and autoimmunity induced by cytotoxic t lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci USA 100(14), 8372–8377 (2003)

    Article  Google Scholar 

  46. F.S. Hodi, S.J. O’Day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J.C. Hassel et al., Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010). https://doi.org/10.1056/NEJMoa1003466

    Article  Google Scholar 

  47. O. Klein, D. Kee, B. Markman, M.S. Carlino, C. Underhill, J. Palmer, D. Power, J. Cebon, A. Behren, Evaluation of TMB as a predictive biomarker in patients with solid cancers treated with anti-PD-1/CTLA-4 combination immunotherapy. Cancer Cell. 39, 592–593 (2021)

    Google Scholar 

  48. S. Van Coillie, B. Wiernicki, J. Xu, Molecular and cellular functions of CTLA-4. Regul. Cancer Immune Checkp. 1248, 7–32 (2020)

    Article  Google Scholar 

  49. S. Khan, D.J. Burt, C. Ralph, F.C. Thistlethwaite, R.E. Hawkins, E. Elkord, Tremelimumab (anti-CTLA4) mediates immune responses mainly by direct activation of T effector cells rather than by affecting T regulatory cells. Clin. Immunol. 138, 85–96 (2011). https://doi.org/10.1016/j.clim.2010.09.011

    Article  Google Scholar 

  50. N. Sobhani, D.R. Tardiel-Cyril, A. Davtyan, D. Generali, R. Roudi, Y. Li, CTLA-4 in regulatory T cells for cancer immunotherapy. Cancers 13(6), 1440 (2021). https://doi.org/10.3390/cancers13061440

    Article  Google Scholar 

  51. P. Pandey, F. Khan, H.A. Qari, T.K. Upadhyay, A.F. Alkhateeb, M. Oves, Revolutionization in cancer therapeutics via targeting major immune checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals 15, 335 (2022). https://doi.org/10.3390/ph15030335

    Article  Google Scholar 

  52. K.C. Ohaegbulam, A. Assal, E. Lazar-Molnar, Y. Yao, X. Zang, Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol. Med. 21(1), 24–33 (2015)

    Article  Google Scholar 

  53. L. Zitvogel, G. Kroemer, Targeting PD-1/PD-L1 interactions for cancer immunotherapy. OncoImmunology 1, 8, 1223–1225 (2012). https://doi.org/10.4161/onci.21335

  54. H. Nishimura, T. Honjo, N. Minato, Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice. J. Exp. Med. 191, 891–898 (2000). https://doi.org/10.1084/jem.191.5.891

    Article  Google Scholar 

  55. M.J. Ansari, A.D. Salama, T. Chitnis, R.N. Smith, H. Yagita, H. Akiba et al., The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003). https://doi.org/10.1084/jem.20022125

    Article  Google Scholar 

  56. K.L. Good Jacobson, C.G. Szumilas, L. Chen, A.H. Sharpe, M.M. Tomayko, M.J. Shlomchik, PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol. 11, 535–542 (2010). https://doi.org/10.1038/ni.1877

    Article  Google Scholar 

  57. D.R. Leach, M.F. Krummel, J.P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996)

    Google Scholar 

  58. F.S. Hodi, S.J. O’Day, D.F. McDermott, R.W. Weber, J.A. Sosman et al., Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010)

    Article  Google Scholar 

  59. S.L. Topalian, F.S. Hodi, J.R. Brahmer, S.N. Gettinger, D.C. Smith et al., Safety, activity, and immune correlates of anti-PD-1 antibody in cancer N. Engl. J. Med. 366, 2443–2454 (2012)

    Google Scholar 

  60. K.S. Peggs, S.A. Quezada, C.A. Chambers, A.J. Korman, J.P. Allison, Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009)

    Google Scholar 

  61. J. Liu, Z. Chen, Y. Li, W. Zhao, J. Wu, Z. Zhang, PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy frontiers in pharmacology 12 (2021). https://doi.org/10.3389/fphar.2021.731798

  62. X. Wu, Z. Gu, Y. Chen, B. Chen, W. Chen, L. Weng, X. Liu, Application of PD-1 blockade in cancer immunotherapy. Comput. Struct. Biotechnol. J. 17, 661–674 (2019). https://doi.org/10.1016/j.csbj.2019.03.006

  63. Y. Iwai, M. Ishida, Y. Tanaka, T. Okazaki, T. Honjo et al., Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA 99, 12293–12297 (2002)

    Google Scholar 

  64. H. Dong, G. Zhu, K. Tamada, L. Chen, B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999)

    Google Scholar 

  65. G.J. Freeman, A.J. Long, Y. Iwai, K. Bourque, T. Chernova et al., Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation J. Exp. Med. 192, 1027–1034 (2000)

    Google Scholar 

  66. A. Ribas, J.D. Wolchok, Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018)

    Google Scholar 

  67. J.S. Weber, S.P. D’Angelo, D. Minor, F.S. Hodi, R. Gutzmer et al., Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015)

    Google Scholar 

  68. M.A. Postow, J. Chesney, A.C. Pavlick, C. Robert, K. Grossmann et al., Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015)

    Google Scholar 

  69. J. Larkin, F.S. Hodi, J.D. Wolchok. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 1270–1271 (2015)

    Google Scholar 

  70. J. Brahmer, K.L. Reckamp, P. Baas, L. Crino, W.E. Eberhardt et al., Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung Cancer. N. Engl. J. Med. 373, 123–135 (2015)

    Google Scholar 

  71. R.J. Motzer, B. Escudier, D.F. McDermott, S. George, H.J. Hammers et al., Nivolumab versus Everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015)

    Google Scholar 

  72. S.M. Ansell, A.M. Lesokhin, I. Borrello, A. Halwani, E.C. Scott et al., PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372, 311–319 (2015)

    Google Scholar 

  73. R.L. Ferris, G. Blumenschein Jr., J. Fayette, J. Guigay, A.D. Colevas et al., Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016)

    Google Scholar 

  74. P. Sharma, M. Retz, A. Siefker-Radtke, A. Baron, A. Necchi et al., Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 18, 312–322 (2017)

    Article  Google Scholar 

  75. M.J. Overman, R. McDermott, J.L. Leach, S. Lonardi, H.J. Lenz et al., Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017)

    Article  Google Scholar 

  76. A.B. El-Khoueiry, B. Sangro, T. Yau, T.S. Crocenzi, M. Kudo et al., Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017)

    Article  Google Scholar 

  77. K. Liu, Z. Zhou, H. Gao, F. Yang, Y. Qian, H. Jin, Y. Guo, Y. Liu, H. Li, C. Zhang, J. Guo, Y. Wan, R. Chen, JQ1, a BET-bromodomain inhibitor, inhibits human cancer growth and suppresses PD-L1 expression. Cell Biol. Int. 43, 642–650 (2019)

    Google Scholar 

  78. D. Ogata, T. Tsuchida, Systemic immunotherapy for advanced cutaneous squamous cell carcinoma. Curr. Treat Options Oncol. 20, 30 (2019)

    Google Scholar 

  79. R.W. Jenkins, D.A. Barbie, K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018)

    Google Scholar 

  80. Y. Han, D. Liu, L. Li, PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 10(3), 727–742 (2020)

    Google Scholar 

  81. A. Rotte, Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255 (2019). https://doi.org/10.1186/s13046-019-1259-z

    Article  Google Scholar 

  82. A. Rotte, J.Y. Jin, V. Lemaire, Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol. 29(1), 71–83 (2018)

    Google Scholar 

  83. M.A. Curran, W. Montalvo, H. Yagita et al., PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. 107, 4275–4280 (2010)

    Google Scholar 

  84. M.A. Postow, J. Chesney, A.C. Pavlick et al., Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015)

    Google Scholar 

  85. M. Selby, J. Engelhardt, L.S. Lu et al., Antitumor activity of concurrent blockade of immune checkpoint molecules CTLA-4 and PD-1 in preclinical models. J. Clin. Oncol. 31(suppl), 3061 (2013)

    Google Scholar 

  86. J.D. Wolchok, H. Kluger, M.K. Callahan et al., Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013)

    Google Scholar 

  87. F.S. Hodi, J. Chesney, A.C. Pavlick, C. Robert, K.F. Grossmann, D.F. McDermott et al., Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17(11), 1558–1568 (2016)

    Google Scholar 

  88. N.P. Restifo, M.E. Dudley, S.A. Rosenberg, Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12(4), 269–281 (2012). https://doi.org/10.1038/nri3191.PMID:22437939;PMCID:PMC6292222

    Article  Google Scholar 

  89. C. Fournier, F. Martin, L. Zitvogel, G. Kroemer, L. Galluzzi, L. Apetoh, Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology 6, e1363139 (2017)

    Google Scholar 

  90. C.H. June, S.R. Riddell, T.N. Schumacher, Adoptive cellular therapy: a race to the finish line. Sci. Transl. Med. 7, 280ps287 (2015)

    Google Scholar 

  91. P.J. Spiess, J.C. Yang, S.A. Rosenberg, In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. J. Natl. Cancer Inst. 79, 1067–1075 (1987)

    Google Scholar 

  92. S.A. Rosenberg, J.R. Yannelli, J.C. Yang, S.L. Topalian, D.J. Schwartzentruber, J.S. Weber, D.R. Parkinson, C.A. Seipp, J.H. Einhorn, D.E. White, Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. 86, 1159–1166 (1994)

    Google Scholar 

  93. M.W. Rohaan, S. Wilgenhof, J.B.A.G. Haanen, Adoptive cellular therapies: the current landscape. Virchows Arch. 474(4), 449–461 (2019). https://doi.org/10.1007/s00428-018-2484-0

  94. S.A. Rosenberg et al., Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011)

    Google Scholar 

  95. M. Hall, H. Liu, M. Malafa, B. Centeno, P.J. Hodul, J. Pimiento, S. Pilon-Thomas, A.A. Sarnaik, Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors. J. Immunother. Cancer 18(4), 61 (2016). https://doi.org/10.1186/s40425-016-0164-7

    Article  Google Scholar 

  96. S.E. Stanton, M.L. Disis, Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer. 18(4), 59 (2016). https://doi.org/10.1186/s40425-016-0165-6

    Article  Google Scholar 

  97. Y. Kawakami et al., Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl. Acad. Sci. USA 91, 3515–3519 (1994)

    Google Scholar 

  98. S.A. Rosenberg, Y. Kawakami, P.F. Robbins, R. Wang, Identification of the genes encoding cancer antigens: implications for cancer immunotherapy. Adv. Cancer Res. 70, 145–177 (1996)

    Google Scholar 

  99. L. Gattinoni, D.J. Powell, S.A. Rosenberg et al., Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383 (2006)

    Google Scholar 

  100. S.T. Paijens, A. Vledder, M. de Bruyn, H.W. Nijman, Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol. Immunol. 18(4), 842–859 (2021). https://doi.org/10.1038/s41423-020-00565-9

  101. B. Lin, L. Du, H. Li, X. Zhu, L. Cui, X. Li, Tumor-infiltrating lymphocytes: warriors fight against tumors powerfully. Biomed. Pharmacother. 132, 110873 (2020). https://doi.org/10.1016/j.biopha.2020.110873

    Article  Google Scholar 

  102. M.G. Rudolph, R.L. Stanfield, I.A. Wilson, How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006)

    Google Scholar 

  103. K.C. Garcia, J.J. Adams, D. Feng, L.K. Ely, The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat. Immunol. 10(2), 143–147 (2009)

    Google Scholar 

  104. M.E. Birnbaum, R. Berry, Y.S. Hsiao et al., Molecular architecture of the alpha beta T cell receptor‐CD3 complex. Proc. Natl. Acad. Sci. USA 111(49), 17576–17581 (2014)

    Google Scholar 

  105. S.S. Chandran, C.A. Klebanoff, T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290(1), 127–147 (2019). https://doi.org/10.1111/imr.12772.PMID:31355495;PMCID:PMC7027847

    Article  Google Scholar 

  106. H. Ikeda, H. Shiku, Adoptive immunotherapy of cancer utilizing genetically engineered lymphocytes. Cancer Immunol. Immunother. 64(7), 903–909 (2015). https://doi.org/10.1007/s00262-015-1718-0

    Article  Google Scholar 

  107. H. Ikeda, T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. Int. Immunol. 28(7), 349–353 (2016). https://doi.org/10.1093/intimm/dxw022

    Article  Google Scholar 

  108. R.A. Morgan, M.E. Dudley, J.R. Wunderlich, M.S. Hughes, J.C. Yang, R.M. Sherry et al., Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006)

    Google Scholar 

  109. J. Neefjes, M.L. Jongsma, P. Paul, O. Bakke, Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11(12), 823–836 (2011)

    Google Scholar 

  110. E.S. Trombetta, I. Mellman, Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005)

    Google Scholar 

  111. Y.T. Chen, E. Stockert, A. Jungbluth, S. Tsang, K.A. Coplan, M.J. Scanlan, L.J. Old, Serological analysis of Melan-A(MART-1), a melanocyte-specific protein homogeneously expressed in human melanomas. Proc. Natl. Acad. Sci. USA 93, 5915–5919 (1996)

    Google Scholar 

  112. L.A. Johnson, R.A. Morgan, M.E. Dudley et al., Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535 (2009)

    Google Scholar 

  113. P.F. Robbins, R.A. Morgan, S.A. Feldman et al., Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917 (2011)

    Google Scholar 

  114. P.F. Robbins, S.H. Kassim, T.L. Tran, J.S. Crystal, R.A. Morgan, S.A. Feldman, J.C. Yang, M.E. Dudley, J.R. Wunderlich, R.M. Sherry, U.S. Kammula, M.S. Hughes, N.P. Restifo, M. Raffeld, C.C. Lee, Y.F. Li, M. El-Gamil, S.A. Rosenberg, A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21(5), 1019–1027 (2015). https://doi.org/10.1158/1078-0432.CCR-14-2708

  115. R.H. Voss, S. Thomas, C. Pfirschke et al., Coexpression of the T‐cell receptor constant alpha domain triggers tumor reactivity of single‐chain TCR‐transduced human T cells. Blood115(25), 5154–5163 (2010)

    Google Scholar 

  116. C.H. June, R.S. O’Connor, O.U. Kawalekar, S. Ghassemi, M.C.C.A.R. Milone, T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018). https://doi.org/10.1126/science.aar6711

  117. M. Sadelain, R. Brentjens, I. Rivière, The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388–398 (2013). https://doi.org/10.1158/2159-8290.CD-12-0548

    Article  Google Scholar 

  118. M. Sadelain, I. Riviere, S. Riddell, Therapeutic T cell engineering. Nature 545, 423–431 (2017)

    Google Scholar 

  119. Z. Eshhar, T. Waks, G. Gross, D.G. Schindler, Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90(2), 720–724 (1993). https://doi.org/10.1073/pnas.90.2.720

    Article  Google Scholar 

  120. J. Scholler, T.L. Brady, G. Binder-Scholl et al., Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci. Transl. Med. 4, 132ra153 (2012)

    Google Scholar 

  121. R.A. Morgan et al., Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010)

    Google Scholar 

  122. M. Sadelain, R. Brentjens, I. Riviere, The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21, 215–223 (2009)

    Google Scholar 

  123. S.S. Neelapu et al., Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). https://doi.org/10.1056/NEJMoa1707447

    Article  Google Scholar 

  124. S.J. Schuster et al., Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017). https://doi.org/10.1056/NEJMoa1708566

    Article  Google Scholar 

  125. S.J.C. van der Stegen, M. Hamieh, M. Sadelain, The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 14, 499–509 (2015). https://doi.org/10.1038/nrd4597

    Article  Google Scholar 

  126. Z. Eshhar, T. Waks, G. Gross, D.G. Schindler, Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90, 720–724 (1993)

    Google Scholar 

  127. C. Imai, K. Mihara, M. Andreansky, I.C. Nicholson, C.H. Pui, T.L. Geiger, D. Campana, Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004)

    Google Scholar 

  128. M. Sadelain, CD19 CAR T cells. Cell 171, 1471 (2017)

    Google Scholar 

  129. M.T. Stephan, V. Ponomarev, R.J. Brentjens, A.H. Chang, K.V. Dobrenkov, G. Heller, M. Sadelain, T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med. 13, 1440–1449 (2007)

    Google Scholar 

  130. X.-S. Zhong, M. Matsushita, J. Plotkin, I. Riviere, M. Sadelain, Chimeric antigen receptors combining 4–1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 18, 413–420 (2010). https://doi.org/10.1038/mt.2009.210

    Article  Google Scholar 

  131. D. Abate-Daga et al., A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum. Gene Ther. 25, 1003–1012 (2014). https://doi.org/10.1089/hum.2013.209

    Article  Google Scholar 

  132. M.C. Milone et al., Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009). https://doi.org/10.1038/mt.2009.83

    Article  Google Scholar 

  133. Z. Wang, Z. Wu, Y. Liu, W. Han, New development in CAR-T cell therapy. J Hematol Oncol. 10(1), 53 (2017). https://doi.org/10.1186/s13045-017-0423-1

    Article  Google Scholar 

  134. R.C. Sterner, R.M. Sterner, CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11(4), 69 (2021). https://doi.org/10.1038/s41408-021-00459-7

    Article  MathSciNet  Google Scholar 

  135. J.M. Roda et al., Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells. Cancer Res. 66(1), 517–526 (2006)

    Article  Google Scholar 

  136. A.G. Freud et al., The broad spectrum of human natural killer cell diversity. Immunity 47(5), 820–833 (2017)

    Article  Google Scholar 

  137. K.J. Malmberg, M. Carlsten, A. Bjorklund, E. Sohlberg, Y.T. Bryceson, H.G. Ljunggren, Natural killer cell-mediated immunosurveillance of human cancer. Semin. Immunol. 31, 20–29 (2017). https://doi.org/10.1016/j.smim.2017.08.002

    Article  Google Scholar 

  138. N. Du, F. Guo, Y. Wang, J. Cui, NK cell therapy: a rising star in cancer treatment. Cancers 13(16), 4129 (2021). https://doi.org/10.3390/cancers13164129

    Article  Google Scholar 

  139. S. Liu, V. Galat, Y. Galat et al., NK cell-based cancer immunotherapy: from basic biology to clinical development. J. Hematol. Oncol. 14, 7 (2021). https://doi.org/10.1186/s13045-020-01014-w

  140. L. Ruggeri et al., Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94(1), 333–339 (1999)

    Article  Google Scholar 

  141. J.S. Miller et al., Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8), 3051–3057 (2005)

    Article  Google Scholar 

  142. N. Sakamoto et al., Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J. Transl. Med. 13, 277 (2015)

    Article  Google Scholar 

  143. E.G. Iliopoulou et al., A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol. Immunother. 59(12), 1781–1789 (2010)

    Article  Google Scholar 

  144. R. Godal, V. Bachanova, M. Gleason, V. McCullar, G.H. Yun, S. Cooley, M.R. Verneris, P.B. McGlave, J.S. Miller, Natural killer cell killing of acute myelogenous leukemia and acute lymphoblastic leukemia blasts by killer cell immunoglobulin-like receptor-negative natural killer cells after NKG2A and LIR-1 blockade. Biol. Blood Marrow Transplant 16(5), 612–621 (2010)

    Google Scholar 

  145. S. Cooley, L.J. Burns, T. Repka, J.S. Miller, Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp. Hematol. 27(10), 1533–41 (1999)

    Google Scholar 

  146. V. Bachanova, J.S. Miller, NK cells in therapy of cancer. Crit. Rev. Oncog. 19(1–2), 133–141 (2014). https://doi.org/10.1615/critrevoncog.2014011091

    Article  Google Scholar 

  147. G. Del Zotto et al., Markers and function of human NK cells in normal and pathological conditions. Cytometry B Clin. Cytom. 92(2), 100–114 (2017)

    Article  Google Scholar 

  148. L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti, S. Posati, D. Rogaia, F. Frassoni, F. Aversa, M.F. Martelli, A. Velardi, Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562), 2097–2100 (2002)

    Google Scholar 

  149. M.R. Parkhurst, J.P. Riley, M.E. Dudley, S.A. Rosenberg, Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. 17, 6287–6297 (2011). https://doi.org/10.1158/1078-0432.CCR-11-1347

    Article  Google Scholar 

  150. S.A. Rosenberg, M.T. Lotze, L.M. Muul, S. Leitman, A.E. Chang, S.E. Ettinghausen, Y.L. Matory, J.M. Skibber, E. Shiloni, J.T. Vetto et al., Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985). https://doi.org/10.1056/NEJM198512053132327

    Article  Google Scholar 

  151. J.S. Miller, C. Morishima, D.G. McNeel, M.R. Patel, H.E.K. Kohrt, J.A. Thompson, P.M. Sondel, H.A. Wakelee, M.L. Disis, J.C. Kaiser et al., A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin. Cancer Res. 24, 1525–1535 (2018). https://doi.org/10.1158/1078-0432.CCR-17-2451

    Article  Google Scholar 

  152. D.M. Benson Jr., A.D. Cohen, S. Jagannath, N.C. Munshi, G. Spitzer, C.C. Hofmeister, Y.A. Efebera, P. Andre, R. Zerbib, M.A. Caligiuri, A phase I trial of the Anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin. Cancer Res. 21, 4055–4061 (2015). https://doi.org/10.1158/1078-0432.CCR-15-0304

    Article  Google Scholar 

  153. S. Cooley, D.J. Weisdorf, L.A. Guethlein, J.P. Klein, T. Wang, C.T. Le, S.G. Marsh, D. Geraghty, S. Spellman, M.D. Haagenson, M. Ladner, E. Trachtenberg, P. Parham, J.S. Miller, Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 116(14), 2411–2419 (2010)

    Google Scholar 

  154. S.J. Russell, K.W. Peng, J.C. Bell, Oncolytic virotherapy. Nat. Biotechnol. 30, 658–670 (2012)

    Google Scholar 

  155. T.D. de Gruijl, A.B. Janssen, V.W. van Beusechem, Arming oncolytic viruses to leverage antitumor immunity. Expert Opin. Biol. Ther. 15, 959–971 (2015)

    Google Scholar 

  156. A. Rosewell Shaw, M. Suzuki, Oncolytic viruses partner with T-cell therapy for solid tumor treatment. Front. Immunol. 9, 2103 (2018)

    Google Scholar 

  157. J. Santos Apolonio, V. Lima de Souza Gonçalves, M.L. Cordeiro Santos, M. Silva Luz, J.V. Silva Souza, S.L. Rocha Pinheiro, W.R. de Souza, M. Sande Loureiro, F.F. de Melo, Oncolytic virus therapy in cancer: a current review. World J. Virol. 10(5), 229–255 (2021). https://doi.org/10.5501/wjv.v10.i5.229

  158. R. Hendrickx, N. Stichling, J. Koelen, L. Kuryk, A. Lipiec, U.F. Greber, Innate immunity to adenovirus. Hum. Gene. Ther. 25, 265–284 (2014)

    Google Scholar 

  159. W.S. Wold, K. Toth, Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene. Ther. 13, 421–433 (2013)

    Google Scholar 

  160. C. Ros, N. Bayat, R. Wolfisberg, J.M. Almendral, Protoparvovirus cell entry. Viruses 9 (2017)

    Google Scholar 

  161. A. Marchini, L. Daeffler, V.I. Pozdeev, A. Angelova, J. Rommelaere, Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front. Immunol. 10, 1848 (2019)

    Google Scholar 

  162. K. Geletneky, A.L. Leoni, G. Pohlmeyer-Esch, S. Loebhard, A. Baetz, B. Leuchs, M. Roscher, C. Hoefer, K. Jochims, M. Dahm, B. Huber, J. Rommelaere, O. Krebs, J. Hajda, Pathology, organ distribution, and immune response after single and repeated intravenous injection of rats with clinical-grade parvovirus H1. Comp. Med. 65, 23–35 (2015)

    Google Scholar 

  163. L. Deng, X. Yang, J. Fan, Y. Ding, Y. Peng, D. Xu, B. Huang, Z. Hu, An oncolytic vaccinia virus armed with GM-CSF and IL-24 double genes for cancer targeted therapy. Oncol. Targets Ther. 13, 3535–3544 (2020)

    Google Scholar 

  164. L. Rosen, J.F. Hovis, F.M. Mastrota, J.A. Bell, R.J. Huebner, Observations on a newly recognized virus (Abney) of the reovirus family. Am. J. Hyg. 71, 258–265 (1960)

    Google Scholar 

  165. K. Hirasawa, S.G. Nishikawa, K.L. Norman, T. Alain, A. Kossakowska, P.W. Lee, Oncolytic reovirus against ovarian and colon cancer. Cancer Res. 62, 1696–1701 (2002)

    Google Scholar 

  166. D. Watanabe, F. Goshima, Oncolytic virotherapy by HSV. Adv. Exp. Med. Biol. 1045, 63–84 (2018)

    Google Scholar 

  167. P.K. Bommareddy, A. Patel, S. Hossain, H.L. Kaufman, Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am. J. Clin. Dermatol. 18, 1–15 (2017)

    Google Scholar 

  168. E. Galanis, S.N. Markovic, V.J. Suman, G.J. Nuovo, R.G. Vile, T.J. Kottke, W.K. Nevala, M.A. Thompson, J.E. Lewis, K.M. Rumilla, V. Roulstone, K. Harrington, G.P. Linette, W.J. Maples, M. Coffey, J. Zwiebel, K. Kendra, Phase II trial of intravenous administration of Reolysin(®) (reovirus serotype-3-dearing strain) in patients with metastatic melanoma. Mol. Ther. 20, 1998–2003 (2012)

    Google Scholar 

  169. J. Tartaglia, S. Pincus, E. Paoletti, Poxvirus-based vectors as vaccine candidates. Crit. Rev. Immunol. 10, 13–30 (1990)

    Google Scholar 

  170. I.R. Eissa, I. Bustos-Villalobos, T. Ichinose, S. Matsumura, Y. Naoe, N. Miyajima, D. Morimoto, N. Mukoyama, W. Zhiwen, M. Tanaka, H. Hasegawa, S. Sumigama, B. Aleksic, Y. Kodera, H. Kasuya, The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Cancers 10 (2018)

    Google Scholar 

  171. S.Y. Yoo, N. Badrinath, H.Y. Woo, J. Heo, Oncolytic virus-based immunotherapies for hepatocellular carcinoma. Mediators Inflamm. 2017, 5198798 (2017)

    Google Scholar 

  172. H. Jiang, Y. Rivera-Molina, C. Gomez-Manzano, K. Clise-Dwyer, L. Bover, L.M. Vence, Y. Yuan, F.F. Lang, C. Toniatti, M.B. Hossain, J. Fueyo, Oncolytic adenovirus and tumor-targeting immune modulatory therapy improve autologous cancer vaccination. Cancer Res. 77, 3894–3907 (2017)

    Google Scholar 

  173. P. Lee, S. Gujar, Potentiating prostate cancer immunotherapy with oncolytic viruses. Nat. Rev. Urol. 15, 235–250 (2018)

    Google Scholar 

  174. S.H. Park, C.J. Breitbach, J. Lee, J.O. Park, H.Y. Lim, W.K. Kang, A. Moon, J.H. Mun, E.M. Sommermann, L. Maruri Avidal, R. Patt, A. Pelusio, J. Burke, T.H. Hwang, D. Kirn, Y.S. Park, Phase 1b trial of biweekly intravenous pexa-vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in colorectal cancer. Mol. Ther. 23, 1532–1540 (2015)

    Google Scholar 

  175. K. Vermaelen, Vaccine strategies to improve anti-cancer cellular immune responses. Front. Immunol. 22(10), 8 (2019). https://doi.org/10.3389/fimmu.2019.00008

    Article  Google Scholar 

  176. C. Guo, M.H. Manjili, J.R. Subjeck, D. Sarkar, P.B. Fisher, X.Y. Wang, Therapeutic cancer vaccines: past, present, and future. Adv. Cancer Res. 119, 421–475 (2013). https://doi.org/10.1016/B978-0-12-407190-2.00007-1

    Article  Google Scholar 

  177. C.J. Melief, S.H. van der Burg, Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat. Rev. Cancer 8(5), 351–360 (2008)

    Google Scholar 

  178. A.H. Morrison, K.T. Byrne, R.H. Vonderheide, Immunotherapy and prevention of pancreatic cancer. Trends Cancer 4(6), 418–428 (2018). https://doi.org/10.1016/j.trecan.2018.04.001

  179. E. Faghfuri, F. Pourfarzi, A.H. Faghfouri, M. Abdoli Shadbad, K. Hajiasgharzadeh, B. Baradaran, Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin. Biol. Ther. 1–8 (2020)

    Google Scholar 

  180. C.L.-L. Chiang, G. Coukos, L.E. Kandalaft, Whole tumor antigen vaccines: where are we? Vaccines 3, 344–372 (2015). https://doi.org/10.3390/vaccines3020344

  181. N.A. Rizvi, M.D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J.J. Havel et al., Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015). https://doi.org/10.1126/science.aaa1348

  182. C.J.M. Melief, T. van Hall, R. Arens, F. Ossendorp, S.H. van der Burg, Therapeutic cancer vaccines. J. Clin. Invest. 125, 3401–3412 (2015). https://doi.org/10.1172/JCI80009

    Article  Google Scholar 

  183. G. Parmiani, C. Castelli, P. Dalerba, R. Mortarini, L. Rivoltini, F.M. Marincola, A. Anichini, Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J. Natl. Cancer Inst. 94, 805–818 (1991)

    Google Scholar 

  184. N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Farokhzad, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014)

    Google Scholar 

  185. M. Neek, T.I. Kim, S.W. Wang, Protein-based nanoparticles in cancer vaccine development. Nanomedicine 15(1), 164–174 (2019). https://doi.org/10.1016/j.nano.2018.09.004

  186. A.M. Van Nuffel, S. Wilgenhof, K. Thielemans, A. Bonehill, Overcoming HLA restriction in clinical trials: immune monitoring of mRNA-loaded DC therapy. Oncoimmunology 1(8), 1392–1394 (2012). https://doi.org/10.4161/onci.20926

    Article  Google Scholar 

  187. L. Miao, Y. Zhang, L. Huang, mRNA vaccine for cancer immunotherapy. Mol. Cancer 20(1), 41 (2021). https://doi.org/10.1186/s12943-021-01335-5

    Article  Google Scholar 

  188. P.W. Kantoff, C.S. Higano, N.D. Shore, E.R. Berger, E.J. Small, D.F. Penson et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 36395, 411–422 (2010)

    Google Scholar 

  189. M. Aleynick, J. Svensson-Arvelund, C.R. Flowers, A. Marabelle, J.D. Brody, Pathogen molecular pattern receptor agonists: treating cancer by mimicking infection. Clin. Cancer Res. 25(21), 6283–6294 (2019)

    Google Scholar 

  190. P.J. DeMaria, M. Bilusic, Cancer vaccines. Hematol. Oncol. Clin. N. Am. 33, 199–214 (2019)

    Google Scholar 

  191. M.A. Morse, W.R. Gwin, D.A. Mitchell, Vaccine therapies for cancer: then and now. Target Oncol. 16(2), 121–152 (2021). https://doi.org/10.1007/s11523-020-00788-w

  192. U. Sahin, Ö. Türeci, Personalized vaccines for cancer immunotherapy. Science 359(6382), 1355–1360 (2018). https://doi.org/10.1126/science.aar7112

    Article  Google Scholar 

  193. F.B. Rogers, R.J. Maloney, Gaston ramon, 1886–1963. Arch. Environ. Health 7, 723–725 (1963)

    Google Scholar 

  194. J.F. Vansteenkiste, B.-C. Cho, T. Vanakesa, T. De Pas, M. Zielinski, M.S. Kim et al., Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17, 822–835 (2016). https://doi.org/10.1016/S1470-2045(16)00099-1

    Article  Google Scholar 

  195. J.C. Ramírez, M.M. Gherardi, M. Esteban, Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J. Virol. 74, 923–933 (2000). https://doi.org/10.1128/JVI.74.2.923-933.2000

    Article  Google Scholar 

  196. W.S. Bowen, A.K. Svrivastava, L. Batra, H. Barsoumian, H. Shirwan, Current challenges for cancer vaccine adjuvant development. Expert Rev. Vaccines 17(3), 207–215 (2018). https://doi.org/10.1080/14760584.2018.1434000

  197. D.S. Chulpanova, K.V. Kitaeva, A.R. Green, A.A. Rizvanov, V.V. Solovyeva, Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front. Cell. Dev. Biol. 3(8), 402 (2020). https://doi.org/10.3389/fcell.2020.00402

    Article  Google Scholar 

  198. L. Bonati, L. Tang, Cytokine engineering for targeted cancer immunotherapy. Curr. Opin. Chem. Biol. 62, 43–52 (2021). https://doi.org/10.1016/j.cbpa.2021.01.007

    Article  Google Scholar 

  199. S. Lee, K. Margolin, Cytokines in cancer immunotherapy. Cancers 3(4), 3856–3893 (2011). https://doi.org/10.3390/cancers3043856

    Article  Google Scholar 

  200. K.C. Conlon, M.D. Miljkovic, T.A. Waldmann, Cytokines in the treatment of cancer. J. Interferon Cytokine Res. 39(1), 6–21 (2019). https://doi.org/10.1089/jir.2018.0019

  201. P. Berraondo, M.F. Sanmamed, M.C. Ochoa, I. Etxeberria, M.A. Aznar, J.L. Pérez-Gracia, M.E. Rodríguez-Ruiz, M. Ponz-Sarvise, E. Castañón, I. Melero, Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120(1), 6–15 (2019). https://doi.org/10.1038/s41416-018-0328-y

  202. T. Floros, A.A. Tarhini, Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin. Oncol. 42(4), 539–548 (2015). https://doi.org/10.1053/j.seminoncol.2015.05.015

  203. C.B. Thompson, J.P. Allison, The emerging role of CTLA-4 as an immune attenuator. Immunity 7(4), 445–450 (1997)

    Google Scholar 

  204. T. Zhang, H.C. Sun, H.Y. Zhou, J.T. Luo, B.L. Zhang, P. Wang et al., Interferon alpha inhibits hepatocellular carcinoma growth through inducing apoptosis and interfering with adhesion of tumor endothelial cells. Cancer Lett.290(2), 204–210 (2010)

    Google Scholar 

  205. B. Escudier, J. Bellmunt, S. Negrier, E. Bajetta, B. Melichar, S. Bracarda et al., Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. Official J. Am. Soc. Clin. Oncol. 28(13), 2144–2150 (2010)

    Google Scholar 

  206. F. Granucci, C. Vizzardelli, N. Pavelka, S. Feau, M. Persico, E. Virzi et al., Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol. 2(9), 882–888 (2001)

    Google Scholar 

  207. S.L. Gaffen, K.D. Liu, Overview of interleukin-2 function, production and clinical applications. Cytokine 28(3), 109–123 (2004)

    Google Scholar 

  208. D. Charych et al., Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS ONE 12, e0179431 (2017). https://doi.org/10.1371/journal.pone.0179431

    Article  Google Scholar 

  209. A. Diab et al., NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: Preliminary phase 1/2 results of PIVOT. J. Clin. Oncol. 36, 3006–3006 (2018). https://doi.org/10.1200/JCO.2018.36.15_suppl.3006

    Article  Google Scholar 

  210. M.K. Kennedy et al., Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000). https://doi.org/10.1084/jem.191.5.771

    Article  Google Scholar 

  211. M. Di Scala et al., Identification of IFN-gamma-producing T cells as the main mediators of the side effects associated to mouse interleukin-15 sustained exposure. Oncotarget 7, 49008–49026 (2016). https://doi.org/10.18632/oncotarget.10264

    Article  Google Scholar 

  212. R. Evans, J.A. Fuller, G. Christianson, D.M. Krupke, A.B. Troutt, IL-15 mediates anti-tumor effects after cyclophosphamide injection of tumor-bearing mice and enhances adoptive immunotherapy: the potential role of NK cell subpopulations. Cell. Immunol. 179, 66–73 (1997). https://doi.org/10.1006/cimm.1997.1132

    Article  Google Scholar 

  213. H. Schmidt et al., Safety and clinical effect of subcutaneous human interleukin-21 in patients with metastatic melanoma or renal cell carcinoma: a phase I trial. Clin. Cancer Res. 16, 5312–5319 (2010). https://doi.org/10.1158/1078-0432.CCR-10-1809

    Article  Google Scholar 

  214. A. O’Garra, P. Vieira, T(H)1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7, 425–428 (2007). https://doi.org/10.1038/nri2097

    Article  Google Scholar 

  215. D. Llopiz et al., IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget 8, 2659–2671 (2017). https://doi.org/10.18632/oncotarget.13736

    Article  Google Scholar 

  216. A. Naing et al., Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J. Clin. Oncol. 34, 3562–3569 (2016). https://doi.org/10.1200/JCO.2016.68.1106

    Article  Google Scholar 

  217. M.J. Smyth, M. Taniguchi, S.E. Street, The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165(5), 2665–2670 (2000)

    Google Scholar 

  218. J.I. Quetglas et al., Virotherapy with a Semliki forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol. Res. 3, 449–454 (2015). https://doi.org/10.1158/2326-6066.CIR-14-0216

    Article  Google Scholar 

  219. K.Y. Helmy, S.A. Patel, G.R. Nahas, P. Rameshwar, Cancer immunotherapy: accomplishments to date and future promise. Ther. Deliv. 4(10), 1307–1320 (2013). https://doi.org/10.4155/tde.13.88

    Article  Google Scholar 

  220. S. Kim, G.P. Haas, G.G. Hillman, Development of immunotherapy for the treatment of malignancies refractory to conventional therapies. Cytokines Mol. Ther. 2(1), 13–19 (1996)

    Google Scholar 

  221. S. Lynam, A.A. Lugade, K. Odunsi, Immunotherapy for gynecologic cancer: current applications and future directions. Clin. Obstet. Gynecol. 63(1), 48–63 (2020). https://doi.org/10.1097/GRF.0000000000000513

    Article  Google Scholar 

  222. A.K. Singh, J.P. McGuirk, CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 21(3), e168–e178 (2020). https://doi.org/10.1016/S1470-2045(19)30823-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanthesh M. Basalingappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vindhya, M., Ramesh Bharadwaj, M.N., Basalingappa, K.M., Gopenath, T.S., Gnanasekaran, A. (2023). Immunotherapy: Targeting Cancer Cells. In: Malviya, R., Sundram, S. (eds) Targeted Cancer Therapy in Biomedical Engineering. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9786-0_5

Download citation

Publish with us

Policies and ethics