Skip to main content

Design and Self-Assembly of Therapeutic Nucleic Acid Nanoparticles (NANPs) with Controlled Immunological Properties

  • Reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

Nucleic acids carry out a diverse number of functions as carriers and regulators of gene expression. By combining naturally occurring structural motifs with known base pairing rules, nucleic acids have also been demonstrated to rationally assemble into nucleic acids nanoparticles (NANPs) of varying shapes, sizes, and compositions. These constructs can be utilized as scaffolds for the delivery of therapeutic moieties and, owing to their programmable nature, can be designed to interact and perform dynamic functions within the cellular environment. However, in order to defend against pathogenic nucleic acids, cells have long since evolved signaling pathways capable of recognizing patterns of nucleic acids which are distinctly nonself in order to elicit a respective immune response. While unknown immunostimulation was previously a hurdle for therapeutic nucleic acids, these established pathways now offer an additional facet of design for therapeutic NANPs, which can be constructed to fit a favorable immunostimulatory profile depending on the therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, Jaeger L (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6:2022–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin KA, Lin YP, Calkins ER, Jaeger L (2012) Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic Acids Res 40:2168–2180

    Article  CAS  PubMed  Google Scholar 

  • Afonin KA, Viard M, Martins AN, Lockett SJ, Maciag AE, Freed EO, Heldman E, Jaeger L, Blumenthal R, Shapiro BA (2013) Activation of different split functionalities upon re-association of RNA-DNA hybrids. Nat Nanotechnol 8:296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin KA, Kasprzak W, Bindewald E, Puppala PS, Diehl AR, Hall KT, Kim TJ, Zimmermann MT, Jernigan RL, Jaeger L, Shapiro BA (2014a) Computational and experimental characterization of RNA cubic nanoscaffolds. Methods 67:256–265

    Article  CAS  PubMed  Google Scholar 

  • Afonin KA, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M, Shapiro BA (2014b) In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res 47:1731–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin KA, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, Desai R, Santhanam A, Grabow WW, Jaeger L, Heldman E, Reiser J, Chiu W, Freed EO, Shapiro BA (2014c) Multifunctional RNA nanoparticles. Nano Lett 14:5662–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin KA, Viard M, Tedbury P, Bindewald E, Parlea L, Howington M, Valdman M, Johns-Boehme A, Brainerd C, Freed EO (2016) The use of minimal RNA toeholds to trigger the activation of multiple functionalities. Nano Lett 16:1746–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin KA, Dobrovolskaia MA, Church G, Bathe M (2020) Opportunities, barriers, and a strategy for overcoming translational challenges to therapeutic nucleic acid nanotechnology. ACS Nano 14:9221–9227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afonin KA, Dobrovolskaia MA, Ke W, Grodzinski P, Bathe M (2022) Critical review of nucleic acid nanotechnology to identify gaps and inform a strategy for accelerated clinical translation. Adv Drug Deliv Rev 181:114081

    Article  CAS  PubMed  Google Scholar 

  • Avila YI, Chandler M, Cedrone E, Newton HS, Richardson M, Jie X, Clogston JD, Liptrott NJ, Afonin KA, Dobrovolskaia MA (2021) Induction of cytokines by Nucleic Acid Nanoparticles (NANPs) depends on the type of delivery carrier. Molecules 26:652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beg MS, Brenner AJ, Sachdev J, Borad M, Kang Y-K, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35:180–188

    Article  CAS  Google Scholar 

  • Bindewald E, Afonin K, Jaeger L, Shapiro BA (2011) Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS Nano 5:9542–9551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindewald E, Afonin KA, Viard M, Zakrevsky P, Kim T, Shapiro BA (2016) Multistrand structure prediction of nucleic acid assemblies and design of RNA switches. Nano Lett 16:1726–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler M, Afonin KA (2019) Smart-responsive Nucleic Acid Nanoparticles (NANPs) with the potential to modulate immune behavior. Nano 9:611

    CAS  Google Scholar 

  • Chandler M, Ke W, Halman JR, Panigaj M, Afonin KA (2018a) Reconfigurable nucleic acid materials for cancer therapy. In: Gonçalves G, Tobias G (eds) Nanooncology: engineering nanomaterials for cancer therapy and diagnosis. Springer International Publishing, Cham

    Google Scholar 

  • Chandler M, Lyalina T, Halman J, Rackley L, Lee L, Dang D, Ke W, Sajja S, Woods S, Acharya S, Baumgarten E, Christopher J, Elshalia E, Hrebien G, Kublank K, Saleh S, Stallings B, Tafere M, Striplin C, Kirill Afonin A (2018b) Broccoli Fluorets: Split Aptamers as a user-friendly fluorescent toolkit for dynamic RNA nanotechnology. Molecules 23

    Google Scholar 

  • Chandler M, Panigaj M, Rolband LA, Afonin KA (2020a) Challenges to optimizing RNA nanostructures for large scale production and controlled therapeutic properties. Nanomedicine (Lond) 15:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Chandler M, Johnson MB, Panigaj M, Afonin KA (2020b) Innate immune responses triggered by nucleic acids inspire the design of immunomodulatory nucleic acid nanoparticles (NANPs). Curr Opin Biotechnol 63:8–15

    Article  CAS  PubMed  Google Scholar 

  • Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA (2021) The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): the present and future of the burgeoning field. ACS Nano 15(11):16957–16973

    Google Scholar 

  • Cruz-Acuña M, Halman JR, Afonin KA, Dobson J, Rinaldi C (2018) Magnetic nanoparticles loaded with functional RNA nanoparticles. Nanoscale 10:17761–17770

    Article  PubMed  Google Scholar 

  • Dobrovolskaia MA, Afonin KA (2020) Use of human peripheral blood mononuclear cells to define immunological properties of nucleic acid nanoparticles. Nat Protoc 15:3678–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrovolskaia MA, Bathe M (2021) Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WIREs Nanomed Nanobiotechnol 13:e1657

    Article  CAS  Google Scholar 

  • Geary C, Rothemund PWK, Andersen ES (2014) A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345:799

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Afonin KA, Viard M, Herrero V, Kasprzak W, Kagiampakis I, Kim T, Koyfman AY, Puri A, Stepler M, Sappe A, KewalRamani VN, Grinberg S, Linder C, Heldman E, Blumenthal R, Shapiro BA (2015) Bolaamphiphiles as carriers for siRNA delivery: from chemical syntheses to practical applications. J Control Release 213:142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halman JR, Satterwhite E, Roark B, Chandler M, Viard M, Ivanina A, Bindewald E, Kasprzak WK, Panigaj M, Bui MN, Lu JS, Miller J, Khisamutdinov EF, Shapiro BA, Dobrovolskaia MA, Afonin KA (2017) Functionally-interdependent shape-switching nanoparticles with controllable properties. Nucleic Acids Res 45:2210–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halman JR, Kim K-T, Gwak S-J, Richard Pace M, Johnson B, Chandler MR, Rackley L, Viard M, Marriott I, Lee JS, Afonin KA (2020) A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution. Nanomedicine 23:102094

    Article  CAS  PubMed  Google Scholar 

  • Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9:e1003569–e1003e69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong E, Halman JR, Shah AB, Khisamutdinov EF, Dobrovolskaia MA, Afonin KA (2018) Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett 18:4309–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F (2020) The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines 5:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Jangle RD, Pisal SS (2012) Vacuum foam drying: an alternative to lyophilization for biomolecule preservation. Indian J Pharm Sci 74:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MB, Halman JR, Satterwhite E, Zakharov AV, Bui MN, Benkato K, Goldsworthy V, Kim T, Hong E, Dobrovolskaia MA, Khisamutdinov EF, Marriott I, Afonin KA (2017) Programmable nucleic acid based polygons with controlled neuroimmunomodulatory properties for predictive QSAR modeling. Small 13:1701255

    Article  Google Scholar 

  • Johnson MB, Halman JR, Miller DK, Cooper JS, Khisamutdinov EF, Marriott I, Afonin KA (2020a) The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification. Nucleic Acids Res 48:11785–11798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MB, Halman JR, Burmeister AR, Currin S, Khisamutdinov EF, Afonin KA, Marriott I (2020b) Retinoic acid inducible gene-I mediated detection of bacterial nucleic acids in human microglial cells. J Neuroinflammation 17:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MB, Chandler M, Afonin KA (2021) Nucleic Acid Nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Delivery Rev 173:427–438

    Article  CAS  Google Scholar 

  • Jones KL, Drane D, Gowans EJ (2007) Long-term storage of DNA-free RNA for use in vaccine studies. BioTechniques 43:675–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juneja R, Vadarevu H, Halman J, Tarannum M, Rackley L, Dobbs J, Marquez J, Chandler M, Afonin K, Vivero-Escoto JL (2020) Combination of nucleic acid and mesoporous silica nanoparticles: optimization and therapeutic performance in vitro. ACS Appl Mater Interfaces 12:38873–38886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  PubMed  Google Scholar 

  • Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39:e142–ee42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karikó K, Muramatsu H, Keller JM, Weissman D (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20:948–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Ke W, Afonin KA (2021) Exosomes as natural delivery carriers for programmable therapeutic Nucleic Acid Nanoparticles (NANPs). Adv Drug Delivery Reviews 176:113835

    Article  CAS  Google Scholar 

  • Ke W, Hong E, Saito RF, Rangel MC, Wang J, Viard M, Richardson M, Khisamutdinov EF, Panigaj M, Dokholyan NV, Chammas R, Dobrovolskaia MA, Afonin KA (2019) RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-κB in human cells. Nucleic Acids Res 47:1350–1361

    Article  CAS  PubMed  Google Scholar 

  • Ke W, Chandler M, Cedrone E, Saito RF, Rangel MC, de Souza Junqueira M, Wang J, Shi D, Truong N, Richardson M, Rolband LA, Dreau D, Bedocs P, Chammas R, Dokholyan NV, Dobrovolskaia MA, Afonin KA (2022) Locking and unlocking thrombin function using immunoquiescent nucleic acid nanoparticles with regulated retention in vivo. Nano Lett 22(14):5961–5972

    Google Scholar 

  • Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P (2014) Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res 42:9996–10004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35:238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Afonin KA, Viard M, Koyfman AY, Sparks S, Heldman E, Grinberg S, Linder C, Blumenthal RP, Shapiro BA (2013) In Silico, in vitro, and in vivo studies indicate the potential use of bolaamphiphiles for therapeutic siRNAs delivery. Mol Ther Nucleic Acids 2:e80

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kladwang W, Lee M, Cantu D, Azizyan M, Kim H, Limpaecher A, Gaikwad S, Yoon S, Treuille A, Das R, Participants Ete RNA (2014) RNA design rules from a massive open laboratory. Proc Natl Acad Sci 111:2122

    Article  PubMed  PubMed Central  Google Scholar 

  • Leontis NB, Westhof E (2003) Analysis of RNA motifs. Curr Opin Struct Biol 13:300–308

    Article  CAS  PubMed  Google Scholar 

  • Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson–crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung DW, Amarasinghe GK (2016) When your cap matters: structural insights into self vs non-self recognition of 5′ RNA by immunomodulatory host proteins. Curr Opin Struct Biol 36:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linares-Fernández S, Lacroix C, Exposito J-Y, Verrier B (2020) Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med 26:311–323

    Article  PubMed  Google Scholar 

  • Liu G, Park HS, Pyo HM, Liu Q, Zhou Y (2015) Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction. J Virol 89:6067–6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madison AY, Gloria DE, Susan RT (2019) Effect of light-assisted drying (LAD) on protein functionality. Proc SPIE. https://doi.org/10.1117/12.2508178

  • Martins AN, Ke W, Jawahar V, Striplin M, Striplin C, Freed EO, Afonin KA (2017) Intracellular reassociation of RNA-DNA hybrids that activates RNAi in HIV-infected cells. Methods Mol Biol 1632:269–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millqvist-Fureby A, Malmsten M, Bergenståhl B (1999) Spray-drying of trypsin—surface characterisation and activity preservation. Int J Pharm 188:243–253

    Article  CAS  PubMed  Google Scholar 

  • Mu X, Greenwald E, Ahmad S, Hur S (2018) An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Res 46:5239–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordmeier S, Ke W, Afonin KA, Portnoy V (2020) Exosome mediated delivery of functional Nucleic Acid Nanoparticles (NANPs). Nanomedicine 30:102285

    Article  CAS  PubMed  Google Scholar 

  • Orlandini von Niessen AG, Poleganov MA, Rechner C, Plaschke A, Kranz LM, Fesser S, Diken M, Löwer M, Vallazza B, Beissert T, Bukur V, Kuhn AN, Türeci Ö, Sahin U (2019) Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol Ther 27:824–836

    Article  CAS  PubMed  Google Scholar 

  • Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panigaj M, Brittany Johnson M, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA (2019) Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano 13:12301–12321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlea L, Bindewald E, Sharan R, Bartlett N, Moriarty D, Oliver J, Afonin KA, Shapiro BA (2016a) Ring catalog: a resource for designing self-assembling RNA nanostructures. Methods 103:128–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA (2016b) Cellular delivery of RNA nanoparticles. ACS Comb Sci 18:527–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi F, Binzel DW, Lee TJ, Li Z, Sun M, Rychahou P, Li H, Haque F, Wang S, Croce CM, Bin Guo B, Evers M, Guo P (2018) Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol 13:82–89

    Article  CAS  PubMed  Google Scholar 

  • Rackley L, Stewart JM, Salotti J, Krokhotin A, Shah A, Halman JR, Juneja R, Smollett J, Lee L, Roark K, Viard M, Tarannum M, Vivero-Escoto J, Johnson PF, Dobrovolskaia MA, Dokholyan NV, Franco E, Afonin KA (2018) RNA fibers as optimized nanoscaffolds for siRNA coordination and reduced immunological recognition. Adv Funct Mater 28:1805959

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol:1–15

    Google Scholar 

  • Roark BK, Tan LA, Ivanina A, Chandler M, Castaneda J, Kim HS, Jawahar S, Viard M, Talic S, Wustholz KL, Yingling YG, Jones M, Afonin KA (2016) Fluorescence blinking as an output signal for biosensing. ACS Sensors 1:1295–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth A, Weinberg Z, Chen AG, Kim PB, Ames TD, Breaker RR (2014) A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol 10:56–60

    Article  CAS  PubMed  Google Scholar 

  • Sabnis S, Sathyajith Kumarasinghe E, Salerno T, Mihai C, Ketova T, Senn JJ, Lynn A, Bulychev A, McFadyen I, Chan J, Almarsson Ö, Stanton MG, Benenato KE (2018) A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther 26:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito RF, Rangel MC, Halman JR, Chandler M, de Sousa Andrade LN, Odete-Bustos S, Furuya TK, Carrasco AGM, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Afonin KA, Chammas R (2021) Simultaneous silencing of Lysophosphatidylcholine Acyltransferases 1–4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells. Nanomedicine:102418

    Google Scholar 

  • Sajja S, Chandler M, Fedorov D, Kasprzak WK, Lushnikov A, Viard M, Shah A, Dang D, Dahl J, Worku B, Dobrovolskaia MA, Krasnoslobodtsev A, Shapiro BA, Afonin KA (2018a) Dynamic behavior of RNA nanoparticles analyzed by AFM on a mica/air interface. Langmuir 34:15099–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajja S, Chandler M, Striplin CD, Afonin KA (2018b) Activation of split RNA aptamers: experiments demonstrating the enzymatic synthesis of short RNAs and their assembly as observed by fluorescent response. J Chem Educ 95(10):1861–1866

    Google Scholar 

  • Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setten RL, Rossi JJ, Han S-p (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18:421–446

    Article  CAS  PubMed  Google Scholar 

  • Shu D, Shu Y, Haque F, Abdelmawla S, Guo P (2011) Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart JM, Viard M, Subramanian HKK, Roark BK, Afonin KA, Franco E (2016) Programmable RNA microstructures for coordinated delivery of siRNAs. Nanoscale 8:17542–17550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran AN, Chandler M, Halman J, Beasock D, Fessler A, McKeough RQ, Lam PA, Furr DP, Wang J, Cedrone E, Dobrovolskaia MA, Dokholyan NV, Trammell SR, Afonin KA (2022) Anhydrous nucleic acid nanoparticles for storage and handling at broad range of temperatures. Small 18:e2104814

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zuroske T, Watts JK (2020) RNA therapeutics on the rise. Nat Rev Drug Discov 19:441–442

    Article  CAS  PubMed  Google Scholar 

  • Wei J-W, Huang K, Yang C, Kang C-S (2017) Non-coding RNAs as regulators in epigenetics. Oncol Rep 37:3–9

    Article  PubMed  Google Scholar 

  • Wilson TJ, Lilley DMJ (2009) The evolution of ribozyme chemistry. Science 323:1436–1438

    Article  CAS  PubMed  Google Scholar 

  • Yingling YG, Shapiro BA (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7:2328–2334

    Article  CAS  PubMed  Google Scholar 

  • Zakrevsky P, Parlea L, Viard M, Bindewald E, Afonin KA, Shapiro BA (2017) Preparation of a conditional RNA switch. In: RNA Nanostructures. Springer

    Google Scholar 

  • Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P, Zhang X (2017) Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano 11:335–346

    Article  CAS  PubMed  Google Scholar 

  • Zhovmer AS, Chandler M, Manning A, Afonin KA, Tabdanov E (2021) Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes. Nanomedicine:102442

    Google Scholar 

Further Readings

  • Acevedo JM, Hoermann B, Schlimbach T, Teleman AA (2018) Changes in global translation elongation or initiation rates shape the proteome via the Kozak sequence. Sci Rep 8:4018

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexaki A, Kames J, Holcomb DD, Athey J, Santana-Quintero LV, Lam PVN, Hamasaki-Katagiri N, Osipova E, Simonyan V, Bar H, Komar AA, Kimchi-Sarfaty C (2019) Codon and Codon-Pair Usage Tables (CoCoPUTs): facilitating genetic variation analyses and recombinant gene design. J Mol Biol 431:2434–2441

    Article  CAS  PubMed  Google Scholar 

  • Allison SD, Chang B, Randolph TW, Carpenter JF (1999) Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch Biochem Biophys 365:289–298

    Article  CAS  PubMed  Google Scholar 

  • Bachellerie J-P, Cavaillé J (1998) Small nucleolar RNAs guide the ribose methylations of eukaryotic rRNAs. In: Modification and editing of RNA. ASM Press, pp 255–272

    Google Scholar 

  • Cazenave C, Uhlenbeck OC (1994) RNA template-directed RNA synthesis by T7 RNA polymerase. Proc Natl Acad Sci 91:6972–6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Shepherd D, Sun J, Ouellette D, Grant KL, Tang X, Pikal MJ (2005) Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci 94:1427–1444

    Article  CAS  PubMed  Google Scholar 

  • Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766

    Article  CAS  PubMed  Google Scholar 

  • Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schäfer A, Ziwawo CT, DiPiazza AT, Dinnon KH, Elbashir SM, Shaw CA, Woods A, Fritch EJ, Martinez DR, Bock KW, Minai M, Nagata BM, Hutchinson GB, Kai W, Henry C, Bahl K, Garcia-Dominguez D, Ma LZ, Renzi I, Kong W-P, Schmidt SD, Wang L, Zhang Y, Phung E, Chang LA, Loomis RJ, Altaras NE, Narayanan E, Metkar M, Presnyak V, Liu C, Louder MK, Shi W, Leung K, Yang ES, West A, Gully KL, Stevens LJ, Wang N, Wrapp D, Doria-Rose NA, Stewart-Jones G, Bennett H, Alvarado GS, Nason MC, Ruckwardt TJ, McLellan JS, Denison MR, Chappell JD, Moore IN, Morabito KM, Mascola JR, Baric RS, Carfi A, Graham BS (2020) SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decroly E, Ferron F, Lescar J, Canard B (2012) Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev. Microbiol 10:51–65

    Article  CAS  Google Scholar 

  • Dobrovolskaia Marina A (2016) Self-assembled DNA/RNA nanoparticles as a new generation of therapeutic nucleic acids: immunological compatibility and other translational considerations. DNA and RNA Nanotechnol 3:1–10

    Google Scholar 

  • Dolgosheina EV, Jeng SC, Panchapakesan SS, Cojocaru R, Chen PS, Wilson PD, Hawkins N, Wiggins PA, Unrau PJ (2014) RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem Biol 9:2412–2420

    Article  CAS  PubMed  Google Scholar 

  • Fabre AL, Colotte M, Luis A, Tuffet S, Bonnet J (2014) An efficient method for long-term room temperature storage of RNA. Eur J Hum Genet 22:379–385

    Article  CAS  PubMed  Google Scholar 

  • Filonov GS, Moon JD, Svensen N, Jaffrey SR (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc 136:16299–16308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, SiQun X, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806

    Article  CAS  PubMed  Google Scholar 

  • Fuglsang A (2003) Codon optimizer: a freeware tool for codon optimization. Protein Expr Purif 31:247–249

    Article  CAS  PubMed  Google Scholar 

  • Guhaniyogi J, Brewer G (2001) Regulation of mRNA stability in mammalian cells. Gene 265:11–23

    Article  CAS  PubMed  Google Scholar 

  • Jasinski D, Haque F, Binzel DW, Guo P (2017) Advancement of the emerging field of RNA nanotechnology. ACS Nano 11:1142–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5

    Google Scholar 

  • Koski GK, Karikó K, Shuwen X, Weissman D, Cohen PA, Czerniecki B (2004) Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J Immunol 172:3989–3993

    Article  CAS  PubMed  Google Scholar 

  • Lima SA, Chipman LB, Nicholson AL, Chen Y-H, Yee BA, Yeo GW, Coller J, Pasquinelli AE (2017) Short poly(A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol 24:1057–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunath SR, Ramanan G, Dedeepiya VD, Terunuma H, Deng X, Baskar S, Senthilkumar R, Thamaraikannan P, Srinivasan T, Preethy S, Abraham SJK (2012) Autologous immune enhancement therapy in recurrent ovarian cancer with metastases: a case report. Case Reports Oncol 5:114–118

    Article  Google Scholar 

  • McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR (2017) Riboswitch diversity and distribution. RNA 23:995–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson J, Sorensen EW, Mintri S, Rabideau AE, Zheng W, Besin G, Khatwani N, Su SV, Miracco EJ, Issa WJ, Hoge S, Stanton MG, Joyal JL (2020) Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv 6:eaaz6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson EK, Covarrubias S, Carpenter S (2020) The how and why of lncRNA function: an innate immune perspective. Biochim Biophys Acta Gene Regul Mech 1863:194419–194419

    Article  CAS  PubMed  Google Scholar 

  • Rose SD, Kim DH, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, Behlke MA (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33:4140–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ, Morris DR, Seelig G (2019) Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat Biotechnol 37:803–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu D, Khisamutdinov EF, Zhang L, Guo P (2013) Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor. Nucleic Acids Res 42:e10–e10

    Article  PubMed  PubMed Central  Google Scholar 

  • Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanguay RL, Gallie DR (1996) Translational efficiency is regulated by the length of the 3′ untranslated region. Mol Cell Biol 16:146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinores SA (2006) Pegaptanib in the treatment of wet, age-related macular degeneration. Int J Nanomedicine 1:263–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg Z, Kim PB, Chen TH, Li S, Harris KA, Lünse CE, Breaker RR (2015) New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat Chem Biol 11:606–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson TJ, Liu Y, Domnick C, Kath-Schorr S, Lilley DMJ (2016) The novel chemical mechanism of the twister ribozyme. J Am Chem Soc 138:6151–6162

    Article  CAS  PubMed  Google Scholar 

  • Young MA, Furr DP, McKeough RQ, Elliott GD, Trammell SR (2020) Light-assisted drying for anhydrous preservation of biological samples: optical characterization of the trehalose preservation matrix. Biomed Opt Express 11:801–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  PubMed  Google Scholar 

  • Zhao BS, He C (2015) Pseudouridine in a new era of RNA modifications. Cell Res 25:153–154

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers R01GM120487 and R35GM139587. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill A. Afonin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chandler, M., Danai, L., Afonin, K.A. (2023). Design and Self-Assembly of Therapeutic Nucleic Acid Nanoparticles (NANPs) with Controlled Immunological Properties. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-19-9776-1_99

Download citation

Publish with us

Policies and ethics