Skip to main content

Approaches to Drug Discovery Against Ascariasis: Opportunity and Challenges in Plant-Based Products

  • Chapter
  • First Online:
Natural Product Based Drug Discovery Against Human Parasites

Abstract

Current treatment for effective control of ascariasis largely relies on mass use of anthelmintics. Nonetheless, Ascaris lumbricoides infection still is a major burden of parasitic diseases, especially in areas with poor sanitation and hygiene. Despite the concerns regarding onset of parasitic genotype resistance to drugs, reduction in drug efficacy, side effects, and cost-effectiveness, there has been slow progress in new drug discovery or no new drug development in pipeline against ascariasis. In this report, we highlighted avenues for soil-transmitted helminthes (STHs) drug candidates based on natural plant products. We give an overview and discussed on the plant-derived compounds having anthelmintic activity and its therapeutic potential. We reviewed some of the opportunities and challenges in the approaches to plant-based drug discovery against ascariasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abriola L, Hoyer D, Caffrey CR, Williams DL, Yoshino TP, Vermeire JJ (2019) Development and optimization of a high-throughput screening method utilizing Ancylostoma ceylanicum egg hatching to identify novel anthelmintics. PLoS One 14:e0217019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alam S, Mustafa G, Ahmad N, Khan M (2007) Presentation and endoscopic management of biliary ascariasis. Southeast Asian J Trop Med Public Health 38:631–635

    PubMed  Google Scholar 

  • André WP, Ribeiro WL, Cavalcante GS, dos Santos JM, Macedo IT, de Paula HC et al (2016) Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet Parasitol 218:52–58

    Article  PubMed  Google Scholar 

  • André WPP, Cavalcante GS, Ribeiro WLC, Santos J, Macedo ITF, Paula HCB et al (2017) Anthelmintic effect of thymol and thymol acetate on sheep gastrointestinal nematodes and their toxicity in mice. Braz J Vet Parasitol 26:323–330

    Article  Google Scholar 

  • Arafa WM, Shokeir KM, Khateib AM (2015) Comparing an In Vivo egg reduction test and in vitro egg hatching assay for different anthelmintics against Fasciola species, in cattle. Vet Parasitol 214:152–158

    Article  PubMed  CAS  Google Scholar 

  • Azeez S, Babu RO, Aykkal R, Narayanan R (2012) Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S transferase of filarial nematodes. J Mol Model 18:151–163

    Article  PubMed  CAS  Google Scholar 

  • Bahu Mda G, Baldisserotto M, Custodio CM, Gralha CZ, Mangili AR (2001) Hepatobiliary and pancreatic complications of ascariasis in children: a study of seven cases. J Pediatr Gastroenterol Nutr 33:271–275

    Article  PubMed  Google Scholar 

  • Banse SA, Blue BW, Robinson KJ, Jarrett CM, Phillips PC (2019) The stress-chip: a microfluidic platform for stress analysis in Caenorhabditis elegans. PloS One 14:e0216283. https://doi.org/10.1371/journal.pone.0216283

    Article  PubMed  PubMed Central  Google Scholar 

  • Bortul R, Tazzari PL, Billi AM, Tabellini G, Mantovani I, Cappellini A et al (2005) Deguelin, a PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway. Br J Haematol 129:677–686

    Article  PubMed  CAS  Google Scholar 

  • Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diement D, Hotez PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367:1521–1532

    Article  PubMed  Google Scholar 

  • Bulman CA, Bidlow CM, Lustigman S, Cho-Ngwa F, Williams D, Rascón AA Jr, Tricoche N, Samje M, Bell A, Suzuki B, Lim KC, Supakorndej N, Supakorndej P, Wolfe AR, Knudsen GM, Chen S, Wilson C, Ang K-H, Arkin M, Gut J, Franklin C, Marcellino C, McKerrow JH, Debnath A, Sakanari JA (2015) Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis. PLoS Negl Trop Dis 9:e0003534. https://doi.org/10.1371/journal.pntd.0003534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell WC (2016) Lessons from the history of ivermectin and other antiparasitic agents. Ann Rev Anim Biosci 4:1–14

    Article  CAS  Google Scholar 

  • Cantacessi C et al (2009) A portrait of the “SCP/TAPS” proteins of eukaryotes—developing a framework for fundamental research and biotechnological outcomes. Biotechnol Adv 27:376–388

    Article  PubMed  CAS  Google Scholar 

  • Cao M, Onyango EO, Williams CR, Royce DB, Gribble GW, Sporn MB et al (2015) Novel synthetic pyridyl analogues of CDDO-imidazolide are useful new tools in cancer prevention. Pharmacol Res 100:135–147

    Article  PubMed  CAS  Google Scholar 

  • Capasso R, Izzo AA, Pinto L, Bifulco T, Vitobello C, Mascolo N (2000) Phytotherapy and quality of herbal medicines. Fitoterapia 71(Suppl.1):S58–S65

    Article  PubMed  Google Scholar 

  • Castelli MV, Lodeyro AF, Malheiros A, Zacchino SAS, Roveri OA (2005) Inhibition of the mitochondrial ATP synthesis by polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene. Biochem Pharmacol 70:82–89

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Mitre GF, Olmedo-Juarez A, Rojo-Rubio R, Gonzalez-Cortazar M, Mendoza-de Gives P, Hernandez-Beteta EE et al (2017) Caffeoyl and coumaroyl derivatives from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J Ethnopharmacol 204:125–131

    Article  PubMed  CAS  Google Scholar 

  • Cavalcante GS, de Morais SM, Andre WP, Ribeiro WL, Rodrigues AL, De Lira FC et al (2016) Chemical composition and in vitro activity of Calotropis procera (Ait.) latex on Haemonchus contortus. Vet Parasitol 226:22–25

    Article  PubMed  CAS  Google Scholar 

  • Chávez A, Zabala de Callau ME, Salas Russo H (1990) In: Publicación de la dirección de investigación científica y tecnológica e interaccion social. Universidad técnica del. Beni. Bolivia. pp 1–10

    Google Scholar 

  • Conterno LO, Turchi MD, Corrêa I, de Barros M, Almeida RA (2020) Anthelmintic drugs for treating ascariasis. Cochrane Database Syst Rev 4:CD010599. https://doi.org/10.1002/14651858

    Article  PubMed  CAS  Google Scholar 

  • Crompton DW, Nesheim MC (2002) Nutritional impact of intestinal helminthiasis during the human life cycle. Annu Rev Nutr 22:35–59

    Article  PubMed  CAS  Google Scholar 

  • Delatour T, Racault L, Bessaire T, Desmarchelier A (2018) Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35:632–645

    Article  PubMed  CAS  Google Scholar 

  • Delcastillo J, Wc D, Morales T (1964) Mechanism of the paralysing action of piperazine on ascaris muscle. Br J Pharmacol Chemother 22(3):463–477. https://doi.org/10.1111/J.1476-5381.1964.Tb01701.X. Pmid: 14211677; Pmcid: Pmc1703942

    Article  PubMed  CAS  Google Scholar 

  • Dichtl K, Ebel F, Dirr F, Routier FH, Heesemann J, Wagener J (2010) Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus. Mol Microbiol 76:1191–1204

    Article  PubMed  CAS  Google Scholar 

  • Dikti Vildina J, Kalmobe J, Djafsia B, Schmidt T, Liebau E, Ndjonka D (2017) Anti-Onchocerca and anti-Caenorhabditis activity of a hydro-alcoholic extract from the fruits of Acacia nilotica and some proanthocyanidin derivatives. Molecules 22:748

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilrukshi Herath HMP, Preston S, Hofmann A, Davis RA, Koehler AV, Chang BCH et al (2017) Screening of a small, well-curated natural product based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet Parasitol 244:172–175

    Article  PubMed  CAS  Google Scholar 

  • DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  • Doligalska M, Jozwicka K, Donskow-Lysoniewska K, Kalinowska M (2017) The antiparasitic activity of avenacosides against intestinal nematodes. Vet Parasitol 241:5–13

    Article  PubMed  CAS  Google Scholar 

  • Dubois O, Allanic C, Charvet CL, Guégnard F, Février H, Théry-Koné I, Cortet J, Koch C, Bouvier F, Fassier T et al (2019) Lupin (Lupinus spp.) seeds exert anthelmintic activity associated with their alkaloid content. Sci Rep 9:9070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engstrom MT, Karonen M, Ahern JR, Baert N, Payre B, Hoste H et al (2016) Chemical structures of plant hydrolyzable tannins reveal their in vitro activity against egg hatching and motility of Haemonchus contortus nematodes. J Agric Food Chem 64:840–851

    Article  PubMed  CAS  Google Scholar 

  • FDA (2018) Drug trials snapshots: moxidectin. https://www.fda.gov/Drugs/InformationOnDrugs/ucm612705.htm. Accessed 7 Dec 2018.

  • Ferreira LE, Benincasa BI, Fachin AL, França SC, Contini SSHT, Chagas ACS et al (2016) Thymus vulgaris L. essential oil and its main component thymol: anthelmintic effects against Haemonchus contortus from sheep. Vet Parasitol 228:70–76

    Article  PubMed  CAS  Google Scholar 

  • Flohr C, Tuyen LN, Lewis S, Minh TT, Campbell J, Britton J et al (2007) Low eMicacy of mebendazole against hookworm in Vietnam: two randomised controlled trials. Am J Trop Med Hyg 76(4):732–736

    Article  PubMed  CAS  Google Scholar 

  • Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, Prichard RK et al (2010) Unresolved issues in anthelmintic pharmacology for helminthiases of humans. Int J Parasitol 40(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Geerts S, Gryseels B (2000) Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 13:207–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giordani F, Morrison LJ, Rowan TG, De Koning HP, Barrett MP (2016) The animal trypanosomiases and their chemotherapy: a review. Parasitology 143:1862–1889

    Article  PubMed  Google Scholar 

  • Global Forum for Health Research (2004) The 10/90 Report on Health Research, 2003–2004. Global Forum for Health Research, Geneva

    Google Scholar 

  • Gomes DC, de Lima HG, Vaz AV, Santos NS, Santos FO, Dias ER et al (2016) In vitro anthelmintic activity of the Zizyphus joazeiro bark againstgastrointestinal nematodes of goats and its cytotoxicity on Vero cells. Vet Parasitol 226:10–16

    Article  PubMed  Google Scholar 

  • Grando TH, de Sa MF, Baldissera MD, Oliveira CB, de Souza ME, Raffin RP et al (2016) In vitro activity of essential oils of free and nanostructured Melaleuca alternifolia and of terpinen-4-ol on eggs and larvae of Haemonchus contortus. J Helminthol 90:377–382

    Article  PubMed  CAS  Google Scholar 

  • Hagel I, Giusti T (2010) Ascaris lumbricoides: an overview of therapeutic targets. Infect Disord Drug Targets 10(5):349–367. https://doi.org/10.2174/187152610793180876

    Article  PubMed  CAS  Google Scholar 

  • Harder A, von Samson-Himmelstjerna G (2001) Activity of the cyclic depsipeptide emodepside (BAY 44–4400) against larval and adult stages of nematodes in rodents and the influence on worm survival. Parasitol Res 87:924–928

    Article  PubMed  CAS  Google Scholar 

  • Holden-Dye L, Walker RJ (2014) Anthelmintic drugs and nematicides: Studies in Caenorhabditis elegans. WormBook:1–29

    Google Scholar 

  • Horton J (2003) Human gastrointestinal helminth infections: are they now neglected diseases? Trends Parasitol 19:527–531

    Article  PubMed  Google Scholar 

  • Hotez PJ et al (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118:1311–1321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Y, Platzer EG, Bellier A, Aroian RV (2010) Discovery of a highly synergistic anthelmintic combination that shows mutual hypersusceptibility. Proc Natl Acad Sci U S A 107:5955–5960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IHGC (2019) International, Helminth Genomes Consortium. Nat Genet 2019(51):163–174. https://doi.org/10.1038/s41588-018-0262-1

    Article  CAS  Google Scholar 

  • Javid G, Wani N, Gulzar GM, Javid O, Khan B, Shah A (1999) Gallbladder ascariasis: presentation and management. Br J Surg 86:1526–1527

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  PubMed  CAS  Google Scholar 

  • Keiser J, Utzinger J (2008) Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA 299(16):1937–1948. https://doi.org/10.1001/jama.299.16.1937

    Article  PubMed  CAS  Google Scholar 

  • Kettler HE, Marjanovic S (2004) Engaging biotechnology companies in the development of innovative solutions for diseases of poverty. Nat Rev Drug Discov 3:171–176

    Article  PubMed  CAS  Google Scholar 

  • Khuroo MS (2001) Hepatobiliary and pancreatic ascariasis. Indian J Gastroenterol 20:28–32

    Google Scholar 

  • Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H (2015) Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist 5:127–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohler P (2001) The biochemical basis of anthelmintic action and resistance. Int J Parasitol 31(4):336–345

    Article  PubMed  CAS  Google Scholar 

  • Lake SL, Matthews JB, Kaplan RM, Hodgkinson JE (2009) De- termination of genomic DNA sequences for beta-tubulin isotype 1 from multiple species of cyathostomin and detection of resistance alleles in third-stage larvae from horses with naturally acquired infections. Parasit Vectors 2(Suppl 2):S6–S18

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei J, Leser M, Enan E (2010) Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans. Biochem Pharmacol 79:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Liebig M, Fernandez ÁA, Blübaum‐Gronau E, Boxall A, Brinke M, Carbonell G, Egeler P, Fenner K, Fernandez C, Fink G, Garric J (2010) Environmental risk assessment of ivermectin: a case study. Integr Environ Assess 6:567–587

    Article  CAS  Google Scholar 

  • Lifschitz A, Lanusse C, Alvarez L (2017) Host pharmacokinetics and drug accumulation of anthelmintics within target helminth parasites of ruminants. N Z Vet J 65(4):176–184. https://doi.org/10.1080/00480169.2017.1317222

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Kipanga P, Mai AH, Dhondt I, Braeckman BP, De Borggraeve W et al (2018) Bioassay-guided isolation of three anthelmintic compounds from Warburgia ugandensis Sprague subspecies ugandensis, and the mechanism of action of polygodial. Int J Parasitol 48:833–844

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Kipanga P, Mai AH, Dhondt I, Braeckman BP, De Borggraeve W, Luyten W (2018a) Bioassay-guided isolation of three anthelmintic compounds from Warburgia ugandensis Sprague subspecies ugandensis, and the mechanism of action of polygodial. Int J Parasitol 48:833–844

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Veryser C, Lu J-G, Wenseleers T, De Borggraeve WM, Jiang Z-H, Luyten W (2018b) Bioassay-guided isolation of active substances from Semen Torreyae identifies two new anthelmintic compounds with novel mechanism of action. J Ethnopharmacol 224:421–428

    Article  PubMed  CAS  Google Scholar 

  • Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, Croese J, Bethony JM (2016) Hookworm infection. Nat Rev Dis Primers 2:16088

    Article  PubMed  Google Scholar 

  • Lumaret JP, Errouissi F, Floate K, Rombke J, Wardhaugh K (2012) A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Curr Pharm Biotechnol 13:1004–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin RJ, Robertson AP (2010) Control of nematode parasites with agents acting on neuro-musculature systems: Lessons for neuropeptide ligand discovery. Adv Exp Med Biol 692:138–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathew MD, Mathew ND, Ebert PR (2012) WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PloS One 7:e33483. https://doi.org/10.1371/journal.pone.0033483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathew MD, Mathew ND, Miller A, Simpson M, Au V, Garland S, Gestin M, Edgley ML, Flibotte S, Balgi A et al (2016) Using C. elegans forward and reverse genetics to identify new compounds with anthelmintic activity. PLoS Negl Trop Dis 10:e0005058

    Article  PubMed  PubMed Central  Google Scholar 

  • Maule AG, Bowman JW, Thompson DP, Marks NJ, Friedman AR, Geary TG (1996) Fmrfamide-related peptides (Farps) in nematodes: occurrence and neuromuscular physiology. Parasitology 113:S119–S135

    Article  PubMed  Google Scholar 

  • McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ (2009) An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode: Haemonchus contortus. Mol Pharmacol 75(6):1347–1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 16:531–543

    Article  PubMed  CAS  Google Scholar 

  • Mousley A, Maule AG, Halton DW, Marks NJ (2005) Inter-phyla studies on neuropeptides: the potential for broad-spectrum anthelmintic and/or endectocide discovery. Parasitology 131:S143–S167

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay M (2009) Biliary ascariasis in the Indian subcontinent: a study of 42 cases. Saudi J Gastroenterol 15:121–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndjonka D, Abladam ED, Djafsia B, Ajonina-Ekoti I, Achukwi MD, Liebau E (2014) Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. J Helminthol 88:481–488

    Article  PubMed  CAS  Google Scholar 

  • Neves BJ, Dantas RF, Senger MR, Melo-Filho CC, Valente WCG, de Almeida ACM, Rezende-Neto JM, Lima EFC, Paveley R, Furnham N, Muratov E, Kamentsky L, Carpenter AE, Braga RC, Silva-Junior FP, Andrade CH (2016) Discovery of new anti-schistosomal hits by integration of QSAR-based virtual screening and high content screening. J Med Chem 59:7075–7088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nieuwhof GJ, Bishop SC (2005) Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Anim Sci 81:23–29

    Article  Google Scholar 

  • Osteux R, Lesieur-Demarquilly I, Lesieur D (1971) Mode of action of piperazine on Ascaris lumbricoides, var. suum. I. Study on respiration and antagonism between piperazine and coenzyme A and adenosine triphosphate. Ann Pharm Fr 29(2):125–133

    PubMed  CAS  Google Scholar 

  • Pasche V, Laleu B, Keiser J (2019) Early antischistosomal leads identified from in vitro and in vivo screening of the medicines for malaria venture pathogen box. ACS Infect Dis 5:102–110. https://doi.org/10.1021/acsinfecdis.8b00220

    Article  PubMed  CAS  Google Scholar 

  • Perry BD, Randolph TF, McDermott JJ, Sones KR, Thornton PK (2002) Investing in animal health research to alleviate poverty. International Livestock Research Institute, Nairobi, Kenya

    Google Scholar 

  • Pineda-Alegria JA, Sanchez-Vazquez JE, Gonzalez-Cortazar M, Zamilpa A, Lopez-Arellano ME, Cuevas-Padilla EJ et al (2017) The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. J Med Food 20:1184–1192

    Article  PubMed  CAS  Google Scholar 

  • Pink R, Hudson A, Mouriès M-A, Bendig M (2005) Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 4(9):727–740. https://doi.org/10.1038/nrd1824

    Article  PubMed  CAS  Google Scholar 

  • Preston S, Jiao Y, Jabbar A, McGee SL, Laleu B, Willis P, Wells TNC, Gasser RB (2016) Screening of the ‘Pathogen Box’ identifies an approved pesticide with major anthelmintic activity against the barber’s pole worm. Int J Parasitol Drugs Drug Resist 6:329–334. https://doi.org/10.1016/j.ijpddr.2016.07.00

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston S, Jiao Y, Baell JB, Keiser J, Crawford S, Koehler AV, Wang T, Simpson MM, Kaplan RM, Cowley KJ, Simpson KJ, Hofmann A, Jabbar A, Gasser RB (2017) Screening of the ‘Open Scaffolds’ collection from Compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber’s pole worm and other parasitic nematodes. Int J Parasitol Drugs Drug Resist 7:286–294. https://doi.org/10.1016/j.ijpddr.2017.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Pullan RL, Smith JL, Jasrasaria R, Brooker SJ (2014) Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR (2014) BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11.12.1–11.12.34

    Article  PubMed  Google Scholar 

  • Restif C, Ibáñez-Ventoso C, Vora MM, Guo S, Metaxas D, Driscoll M (2014) CeleST: computer vision software for quantitative analysis of C. elegans swim behavior reveals novel features of locomotion. PLoS Comput Biol 10:e1003702. https://doi.org/10.1371/journal.pcbi.1003702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Risi G, Aguilera E, Ladós E, Suárez G, Carrera I, Álvarez G, Salinas G (2019) Caenorhabditis elegans infrared-based motility assay identified new hits for nematicide drug development. Vet Sci 6:29. https://doi.org/10.3390/vetsci6010029

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritler D, Rufener R, Sager H, Bouvier J, Hemphill A, Lundström-Stadelmann B (2017) PLoS Neglected Trop Dis 11:e0005618. https://doi.org/10.1371/journal.pntd.0005618

    Article  CAS  Google Scholar 

  • Robbani I, Shah OJ, Zargar SA (2008) Worms in liver abscess: extensive hepatobiliary ascariasis. Dig Liver Dis 40(12):962

    Article  PubMed  CAS  Google Scholar 

  • Romero MC, Valero A, Martin-Sanchez J, Navarro-Moll MC (2012) Activity of Matricaria chamomilla essential oil against anisakiasis. Phytomedicine 19:520–523

    Article  PubMed  CAS  Google Scholar 

  • Sakai C, Tomitsuka E, Esumi H, Harada S, Kita K (2012) Mitochondrial fumarate reductase as a target of chemotherapy: from parasites to cancer cells. Biochim Biophys Acta Gen Subj 1820:643–651

    Article  CAS  Google Scholar 

  • Socolsky C, Dominguez L, Asakawa Y, Bardon A (2012) Unusual terpenylated acylphloroglucinols from Dryopteris wallichiana. Phytochemistry 80:115–122

    Article  PubMed  CAS  Google Scholar 

  • Stanke M et al (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435–W439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stepek G, Behnke JM, Buttle DJ, Duce IR (2004) Natural plant cysteine proteinases as anthelmintics? Trends Parasitol 20(7):322–327. https://doi.org/10.1016/j.pt.2004.05.003

    Article  PubMed  CAS  Google Scholar 

  • Stroustrup N, Ulmschneider BE, Nash ZM, López-Moyado IF, Apfeld J, Fontana W (2013) The Caenorhabditis elegans lifespan machine. Nat Methods 10:665–670. https://doi.org/10.1038/nmeth.2475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18:1979–1990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trouiller P et al (2002) Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 359:2188–2194

    Article  PubMed  Google Scholar 

  • Utzinger J, Keiser J (2004) Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opin Pharmacother 5(2):263–285. https://doi.org/10.1517/14656566.5.2.263

    Article  PubMed  CAS  Google Scholar 

  • Vercruysse J, Behnke JM, Albonico M, Ame SM, Angebault C, Bethony JM et al (2011) Assessment of the anthelmintic eMicacy of albendazole in school children in seven countries where soiltransmitted helminths are endemic. PLoS Negl Trop Dis 5(3):e948

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner H, Ulrich-Merzenich G (2009) Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 16:97–110

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Ma CM, Hattori M (2009) Synthesis and evaluation of A-seco type triterpenoids for anti-HIV-1protease activity. Eur J Med Chem 44:4112–4120

    Article  PubMed  CAS  Google Scholar 

  • WHO World Health Organization (2021) Model list of essential medicines - 22nd list. WHO/MHP/HPS/EML/2021.02

    Google Scholar 

  • Woods DJ, Maeder SJ, Robertson AP, Martin RJ, Geary TG, Thompson DP, Johnson SS, Conder GA (2012) Discovery, mode of action, and commercialization of derquantel. In: Caffery CR, Selzner PM (eds) Parasitic helminths: targets, screens, drugs, and vaccines. Wiley & Blackwell, Weinhem, pp 297–307

    Chapter  Google Scholar 

  • Xiang WS, Wang JD, Wang M, Wang XJ (2010) New nemadectin congener from Streptomyces microflavus neau3: fermentation, isolation, structure elucidation and biological activities. J Antibiot 63:171–175

    Article  CAS  Google Scholar 

  • Yarborough C (2016) Why animal health is the next big area. Life Science Connect. https://www.lifescienceleader.com/doc/why-animal-health-is-the-next-big-growth-area-0001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses Rinchui Ngasainao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yarreiphang, H., Mangangcha, I.R., Ngasainao, M.R. (2023). Approaches to Drug Discovery Against Ascariasis: Opportunity and Challenges in Plant-Based Products. In: Singh, A., Rathi, B., Verma, A.K., Singh, I.K. (eds) Natural Product Based Drug Discovery Against Human Parasites. Springer, Singapore. https://doi.org/10.1007/978-981-19-9605-4_23

Download citation

Publish with us

Policies and ethics