Skip to main content

Quantum Machine Learning in Prediction of Breast Cancer

  • Chapter
  • First Online:
Quantum Computing: A Shift from Bits to Qubits

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1085))

Abstract

Machine learning (ML) is the most promising subset of artificial intelligence. Quantum computing is prevalent for fast problem-solving approaches. The complex problems are classified and solved using huge multi-dimensional space. The various algorithms can interfere in multi-dimensional space and resolve the problems. Quantum Machine Learning provides the platform for various mining processes with to the point developments in quantum computing. Quantum computing & Machine learning both are very complex. Quantum Machine learning focuses on quick problem-solving synthesis with a quantum framework using different algorithms. Machine Learning functions by supervised, unsupervised, and semi-supervised learning mechanisms. ML uses label and unlabeled data to implement different classification, clustering, and decision trees for complex problems. Quantum computing comprises quantum counterparts for various computational complexity. Quantum Machine Learning provides a profound sympathetic approach for various subjects to derive new dimensioned results. There are several serious life-threatening diseases such as cancer, hepatotoxicity, cardiotoxicity, nephrotoxicity, etc. require prompt and precise detection at the early stages of progression. The need of the hour is to develop rapid, accurate, and more efficient strategies for various disease predictions which are also cost-effective and non-invasive in nature. Breast cancer is also such a disease that early screening is challenging owning to hereditary predisposition. Quantum computation techniques emerged with Machine learning as the promising approach in the past decade concerning the prediction of breast cancer. The quantum computes can be utilized for assisting cancer detection by employing quantum neural networks, quantum simulators, Super Vector Machine (SVM); Artificial Neural Networks (ANN), Dimensionality Reduction Algorithms etc. are used on the pre-processed dataset for the derived prediction of breast cancer. This book chapter will focus on current trends of Quantum Machine leaning for the prediction of breast cancers by solving complex computational problems using above stated algorithms. This chapter discusses the Molecular Classification of Breast Cancer as Luminal-A, Luminal-B, Normal-like, HER2 enriched, and Basal-like with Breast Cancer Diagnostic Techniques. It covers the study of Brest cancer prediction using Quantum Neural Network, Dimensionality Reduction Algorithms, and Support vector machines (SVM). It includes comparative discussions about different algorithms for breast cancer prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Quiroga, P. Date, R. Pooser, Discriminating quantum states with quantummachine learning, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), 17–22 October 2021, pp. 481–482

    Google Scholar 

  2. M. Nivelkar, S.G. Bhirud, Optimized machine learning: training and classification performance using quantum computing, in 2021 IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), 17–19 December 2021, pp. 8–13

    Google Scholar 

  3. P. Sangeetha, P. Kumari, Quantumalgorithms for machine learning and optimization, in 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS), 8 November 2020, pp. 1–2

    Google Scholar 

  4. P. Rebentrost, M. Mohseni, S. Lloyd, Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014). https://doi.org/10.1103/PhysRevLett.113.130503

    Article  Google Scholar 

  5. G. Bonaccorso, Machine Learning Algorithms (Packt Publishing Ltd., 2017)

    Google Scholar 

  6. F. Schwenker, E. Trentin, Pattern classification and clustering: a review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4–14 (2014). https://doi.org/10.1016/j.patrec.2013.10.017

    Article  Google Scholar 

  7. M. Riedmiller, Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Comput. Stand. Interf. 16(3), 265–278 (1994)

    Article  Google Scholar 

  8. S.S. Sawant, M. Prabukumar, A review on graph-based semi-supervised learning methods for hyperspectral image classification. Egypt. J. Remote Sens. Space Sci. 23(2), 243–248 (2020). https://doi.org/10.1016/j.ejrs.2018.11.001

    Article  Google Scholar 

  9. N. Li, M. Shepperd, Y. Guo, A systematic review of unsupervised learning techniques for software defect prediction. Inf. Softw. Technol. 122, 106287 (2020). https://doi.org/10.1016/j.infsof.2020.106287

    Article  Google Scholar 

  10. T.O. Ayodele, Types of machine learning algorithms. New Adv. Mach. Learn. 3, 19–48 (2010)

    Google Scholar 

  11. R. Chatterjee, T. Yu, Generalized coherent states, reproducing kernels, and quantum support vector machines (2016). arXiv preprint arXiv:1612.03713

  12. Z. Zhao, J.K. Fitzsimons, J.F. Fitzsimons, Quantum-assisted Gaussian process regression. Phys. Rev. A 99(5), 052331 (2019)

    Article  Google Scholar 

  13. J.D. Whitfield, M. Faccin, J.D. Biamonte, Ground-state spin logic. EPL (Europhys. Lett.) 99(5), 57004 (2012)

    Article  Google Scholar 

  14. Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 34(5), 1–41 (2007)

    Google Scholar 

  15. M. Denil,N. De Freitas, Toward the implementation of a quantum RBM (2011)

    Google Scholar 

  16. V. Dumoulin, I. Goodfellow, A. Courville, Y. Bengio, On the challenges of physical implementations of RBMs’ (2014)

    Google Scholar 

  17. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning. Nature 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474

    Article  Google Scholar 

  18. J.D. Biamonte, P.J. Love, Realizable Hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78(1), 012352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Lloyd, B.M. Terhal, Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions. New J. Phys. 18(2), 023042 (2016)

    Article  Google Scholar 

  20. S.-Y. Xia, Z.-Y. Xiong, Y.-G. Luo, L.-M. Dong, A method to improve support vector machine based on distance to hyperplane, 126(20), 2405–2410 (2015)

    Google Scholar 

  21. E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014). arXiv preprint arXiv:1411.4028

  22. S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised andunsupervised machine learning (2013). arXiv preprint arXiv:1307.0411

  23. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  24. S. Lloyd, C. Weedbrook, Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018). https://doi.org/10.1103/PhysRevLett.121.040502

    Article  MathSciNet  Google Scholar 

  25. I. Cong, S. Choi, M.D. Lukin, Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019). https://doi.org/10.1038/s41567-019-0648-8

    Article  Google Scholar 

  26. C. Lavor, L.R.U. Manssur, R. Portugal, Grover’s algorithm: Quantum database search (2003). arXiv preprint quant-ph/0301079

  27. M. Kaloev, G. Krastev, Experiments focused on exploration in deep reinforcement learning, in 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 21–23 October 2021, pp. 351–355

    Google Scholar 

  28. W.D. Smart, L.P. Kaelbling, Effective reinforcement learning for mobile robots, in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (IEEE, 2002), pp. 3404–3410

    Google Scholar 

  29. E. Aïmeur, G. Brassard, S. Gambs, Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013). https://doi.org/10.1007/s10994-012-5316-5

  30. A. Bisio, G. Chiribella, G.M. d Ariano, S. Facchini, P. Perinotti, Optimal quantum learning of a unitary transformation, 81, 032324 (2010)

    Google Scholar 

  31. S. Lloyd, M. Mohseni, P. Rebentrost, Quantum principal componentanalysis, 10, 631–633 (2014)

    Google Scholar 

  32. D. Ventura, T. Martinez, Quantum associative memory. Inf. Sci. 124(1), 273–296 (2000). https://doi.org/10.1016/S0020-0255(99)00101-2

    Article  MathSciNet  Google Scholar 

  33. N. Wiebe, A. Kapoor, K. Svore, Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning (2014). arXiv preprint arXiv:1401.2142

  34. A. Narayanan, T. Menneer, Quantum artificial neural network architectures and components. Inform. Sci. 128, 231–255 (2000a). https://doi.org/10.1016/S0020-0255(00)00055-4

  35. D. Anguita, S. Ridella, F. Rivieccio, R. Zunino, Quantum optimization for training support vector machines. Neural Netw. 16(5–6), 763–770 (2003). https://doi.org/10.1016/s0893-6080(03)00087-x

  36. K.-A. Brickman, P. Haljan, P. Lee, M. Acton, L. Deslauriers, C. Monroe, Implementation of Grover’s quantum search algorithm in a scalable system, 72(5), 050306 (2005)

    Google Scholar 

  37. P. Kwiat, J. Mitchell, P. Schwindt, A.G. White, Grover’s search algorithm: an optical approach, 47(2–3), 257–266 (2000)

    Google Scholar 

  38. C. Allauzen, M. Crochemore, M. Raffinot, Factor oracle: a new structure for pattern matching, in International Conference on Current Trends in Theory and Practice of Computer Science (Springer, 1999), pp. 295–310

    Google Scholar 

  39. D. Dong, C. Chen, H. Li, T. Tarn, Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38(5), 1207–1220 (2008). https://doi.org/10.1109/TSMCB.2008.925743

  40. K. Kashyap, S.D. Lalit, L. Gautam, From classical to quantum: a review ofrecent progress in reinforcement learning, in 2021 2nd International Conference for Emerging Technology (INCET). 21–23 May 2021, pp. 1–5

    Google Scholar 

  41. C. Chen, D. Dong, Complexity analysis of Quantum reinforcement learning, in Proceedings of the 29th Chinese Control Conference, 29–31 July 2010, pp. 5897–5901

    Google Scholar 

  42. A.J. Smith, Applications of the self-organising map to reinforcement learning. Neural Netw. 15(8–9), 1107–1124 (2002)

    Article  Google Scholar 

  43. C. Chen, H.-X. Li, D. Dong, Hybrid control for robotnavigation-a hierarchical q-learning algorithm, 15(2), 37–47 (2008)

    Google Scholar 

  44. M. Kaya, R. Alhajj, A novel approach to multiagent reinforcement learning: utilizing OLAP mining in the learning process. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(4), 582–590. https://doi.org/10.1109/TSMCC.2004.843188

  45. S. Whiteson, Evolutionary function approximation for reinforcement learning, 7 (2006)

    Google Scholar 

  46. T. Hogg, D. Portnov, Quantum optimization. Inf. Sci. 128(3–4), 181–197 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. A.A. Ezhov, D. Ventura, Quantum neural networks, in Future Directions for Intelligent Systems and Information Sciences (Springer, 2000), pp. 213–235

    Google Scholar 

  48. C.M. Catherine, Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice (Morgan & Claypool, 2014)

    Google Scholar 

  49. Y. Matsuda, H. Nishimori, H.G. Katzgraber, Ground-state statistics from annealing algorithms: quantum versus classical approaches. New J. Phys. 11(7), 073021 (2009)

    Article  Google Scholar 

  50. G.E. Santoro, R. Martonák, E. Tosatti, R. Car, Theory of quantum annealing of an Ising spin glass. Science 295(5564), 2427–2430 (2002)

    Article  Google Scholar 

  51. W. Vinci,K. Markström, S. Boixo, A. Roy, F.M. Spedalieri, P.A. Warburton, et al., Hearing the shape of the Ising model with a programmable superconducting-flux annealer, 4(1), 1–7 (2014)

    Google Scholar 

  52. N. Chancellor, S. Szoke, W. Vinci, G. Aeppli, P.A. Warburton, Maximum- entropy inference with a programmable annealer, 6(1), 1–14 (2016)

    Google Scholar 

  53. Y. Otsubo, J.-I. Inoue, K. Nagata, M. Okada, Effect of quantumfluctuation in error-correcting codes, 86(5), 051138 (2012)

    Google Scholar 

  54. Y. Otsubo, J.-I. Inoue, K. Nagata, M. Okada, Code-division multiple-access multiuser demodulator by using quantum fluctuations, 90(1), 012126 (2014)

    Google Scholar 

  55. V. Choi, Adiabatic quantum algorithms for the NP-complete maximum—weightindependent set, exact cover and 3SAT problems (2010)

    Google Scholar 

  56. S.H. Adachi, M.P. Henderson, Application of quantum annealing to the training of deep neural networks (2015). arXiv preprint arXiv:1510.06356

  57. M.H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, R. Melko, Quantum Boltzmann machine. Phys. Rev. X 8(2), 021050 (2018)

    Google Scholar 

  58. K. Hukushima, K. Nemoto, Exchange Monte Carlo method and application to spin glass simulations, 65(6), 1604–1608 (1996)

    Google Scholar 

  59. S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Optimization by simulatedannealing, 220(4598), 671–680 (1983)

    Google Scholar 

  60. D. de Falco, D. Tamascelli, An introduction to quantum annealing, 45(1), 99–116 (2011)

    Google Scholar 

  61. Morita, S., & Nishimori, H (2008). Mathematical foundation of quantum annealing. 49(12), 125210

    Google Scholar 

  62. M. Panella, G. Martinelli, Neural networks with quantum architecture and quantum learning. Int. J. Circ. Theory Appl. 39(1), 61–77 (2011)

    Google Scholar 

  63. R. Zhou, H. Zheng, N. Jiang, Q. Ding, Self-organizing Quantum Neural Network (IEEE, 2006), pp. 1067–1072

    Google Scholar 

  64. A.J. da Silva, T.B. Ludermir, W.R. de Oliveira, Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Netw. 76, 55–64 (2016)

    Google Scholar 

  65. S.C. Kak, Quantum neural computing. Adv. Imag. Electron. Phys. 94, 259–313 (1995)

    Article  Google Scholar 

  66. A. Narayanan,T. Menneer, Quantum artificial neural network architectures and components, 128(3–4), 231–255 (2000b)

    Google Scholar 

  67. S. Ding, Z. Zhu, X. Zhang, An overview on semi-supervised support vector machine. Neural Comput. Appl. 28(5), 969–978 (2017)

    Article  Google Scholar 

  68. S. Ding, X. Hua, J. Yu, An overview on nonparallel hyperplane support vector machine algorithms. Neural Comput. Appl. 25(5), 975–982 (2014). https://doi.org/10.1007/s00521-013-1524-6

    Article  Google Scholar 

  69. Y.-H. Shao,W.-J. Chen, N.-Y. Deng, Nonparallel hyperplane support vector machine for binary classification problems. Inform. Sci. 263, 22–35 (2014). https://doi.org/10.1016/j.ins.2013.11.003

  70. H. Xu, C. Guedes Soares, Manoeuvring modelling of a containership in shallowwater based on optimal truncated nonlinear kernel-based least square support vector machine and quantum-inspired evolutionary algorithm. Ocean Eng. 195, 106676 (2020). https://doi.org/10.1016/j.oceaneng.2019.106676

  71. Y. Zhang, Q. Ni, Recent advances in quantum machine learning, 2(1), e34 (2020). https://doi.org/10.1002/que2.34

  72. D.M. Hausman, What is cancer? Perspect Biol Med 62(4), 778–784 (2019). https://doi.org/10.1353/pbm.2019.0046

    Article  Google Scholar 

  73. P.S. Roy, B.J. Saikia, Cancer and cure: a critical analysis. Indian J. Cancer 53(3), 441–442 (2016). https://doi.org/10.4103/0019-509x.200658

    Article  Google Scholar 

  74. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 72(1), 7– 33 (2022). https://doi.org/10.3322/caac.21708

  75. M.A. Zaimy, N. Saffarzadeh, A. Mohammadi, H. Pourghadamyari, P. Izadi, A. Sarli et al., New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene. Ther. 24(6), 233–243 (2017). https://doi.org/10.1038/cgt.2017.16

    Article  Google Scholar 

  76. P. Mathur, K. Sathishkumar, M. Chaturvedi, P. Das, K.L. Sudarshan, S. Santhappan, et al., Cancer Statistics, 2020: Report From National Cancer Registry Programme, India, (6), 1063-1075 (2020). https://doi.org/10.1200/go.20.00122

  77. R. Fisher, L. Pusztai, C. Swanton, Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108(3), 479–485 (2013). https://doi.org/10.1038/bjc.2012.581

    Article  Google Scholar 

  78. C.E. Meacham, S.J. Morrison, Tumour heterogeneity and cancer cell plasticity. Nature 501(7467), 328–337 (2013). https://doi.org/10.1038/nature12624

  79. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 66(1), 7–30. (2016). https://doi.org/10.3322/caac.21332

  80. K. Aizawa, C. Liu, S. Tang, S. Veeramachaneni, K.-Q. Hu, D.E. Smith, et al., Tobacco carcinogen induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation, 139(5), 1171–1181 (2016). https://doi.org/10.1002/ijc.30161

  81. S.O. Antwi, E.C. Eckert, C.V. Sabaque, E.R. Leof, K.M. Hawthorne, W.R. Bamlet et al., Exposure to environmental chemicals and heavy metals, and risk of pancreatic cancer. Cancer Causes & Control 26(11), 1583–1591 (2015). https://doi.org/10.1007/s10552-015-0652-y

    Article  Google Scholar 

  82. M.G.K. Cumberbatch, A. Cox, D. Teare, J.W.F. Catto, Contemporary occupational carcinogen exposure and bladder cancer: a systematic review and meta-analysis. JAMA Oncol. 1(9), 1282–1290 (2015). https://doi.org/10.1001/jamaoncol.2015.3209%JJAMAOncology

    Article  Google Scholar 

  83. S.L. Poon, J.R. McPherson, P. Tan, B.T. Teh, S.G. Rozen, Mutation signatures of carcinogen exposure: genome-wide detection and new opportunities for cancer prevention. Gen. Med. 6(3), 24 (2014). https://doi.org/10.1186/gm541

    Article  Google Scholar 

  84. D.M. Parkin, The global health burden of infection-associated cancers in the year, 118(12), 3030–3044 (2006). https://doi.org/10.1002/ijc.21731

  85. Z. Anastasiadi, G.D. Lianos, E. Ignatiadou, H.V. Harissis, M. Mitsis, Breast cancer in young women: an overview. Updat. Surg. 69(3), 313–317 (2017). https://doi.org/10.1007/s13304-017-0424-1

    Article  Google Scholar 

  86. A. Metelková, A. Skálová, J. Fínek, Breast cancer in young women-correlation of clinical histomorphological, and molecular-genetic features of breast carcinoma in women younger than 35 years of age. Klin Onkol 30(3), 202–209 (2017). https://doi.org/10.14735/amko2017202

    Article  Google Scholar 

  87. H.A. Azim, A.H. Partridge, Biology of breast cancer in young women. Breast Cancer Res. 16(4), 427 (2014). https://doi.org/10.1186/s13058-014-0427-5

    Article  Google Scholar 

  88. F.K. Al-Thoubaity, Molecular classification of breast cancer: A retrospective cohort study. Ann. Med. Surg. (Lond.) 49, 44–48. https://doi.org/10.1016/j.amsu.2019.11.021

  89. N. Eliyatkın, E. Yalçın, B. Zengel, S. Aktaş, E. Vardar, Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J. Breast Health 11(2), 59–66 (2015). https://doi.org/10.5152/tjbh.2015.1669

    Article  Google Scholar 

  90. E.A. Rakha, I.O. Ellis, Modern classification of breast cancer: should we stick with morphology or convert to molecular profile characteristics. Adv. Anat. Pathol. 18(4) 255–267 (2011). https://doi.org/10.1097/PAP.0b013e318220f5d1

  91. G. Viale, The current state of breast cancer classification. Ann. Oncol. 23, x207–x210 (2012). https://doi.org/10.1093/annonc/mds326

    Article  Google Scholar 

  92. A. Blagodatski, V. Cherepanov, A. Koval, V.I. Kharlamenko, Y.S. Khotimchenko, V.L. Katanaev, High-throughput targeted screening in triple-negative breast cancer cells identifies Wnt-inhibiting activities in Pacific brittle stars. Sci. Rep. 7(1), 11964 (2017). https://doi.org/10.1038/s41598-017-12232-7

    Article  Google Scholar 

  93. P.A. Fitzpatrick, N. Akrap, E.M.V. Söderberg, H. Harrison, G.J. Thomson, G. Landberg, Robotic mammosphere assay for high-throughput screening in triple-negative breast cancer. SLAS Discov. 22(7), 827–836 (2017). https://doi.org/10.1177/2472555217692321

  94. L. Huang, X. Yi, X. Yu, Y. Wang, C. Zhang, L. Qin, et al., High-throughput strategies for the discovery of anticancer drugs by targeting transcriptional reprogramming (review), 11 (2021). https://doi.org/10.3389/fonc.2021.762023

  95. Z. Sun, B. Zhang, High-throughput screening (HTS) of natural products with triple- negative breast cancer (TNBC) organoids, 37(15_suppl), e12558 (2019). https://doi.org/10.1200/JCO.2019.37.15_suppl.e12558

  96. F.K. Al-thoubaity, Molecular classification of breast cancer: a retrospective cohort study. Ann. Med. Surg. 49, 44–48 (2020a). https://doi.org/10.1016/j.amsu.2019.11.021

  97. H.O. Habashy, D.G. Powe, T.M. Abdel-Fatah, J.M. Gee, R.I. Nicholson, A.R. Green et al., A review of the biological and clinical characteristics of luminal-like oestrogen receptor-positive breast cancer. Histopathology 60(6), 854–863 (2012). https://doi.org/10.1111/j.1365-2559.2011.03912.x

    Article  Google Scholar 

  98. C. Sotiriou, S.-Y. Neo, L.M. McShane, E.L. Korn, P.M. Long, A. Jazaeri et al., Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. U.S.A. 100(18), 10393–10398 (2003). https://doi.org/10.1073/pnas.1732912100

    Article  Google Scholar 

  99. L.A. Carey, Through a glass darkly: advances in understanding breast cancer biology, 2000–2010. Clin Breast Cancer 10(3), 188–195 (2010). https://doi.org/10.3816/CBC.2010.n.026

    Article  Google Scholar 

  100. J.J. Gao, S.M. Swain, Luminal a breast cancer and molecular assays: a review. Oncologist 23(5), 556–565 (2018). https://doi.org/10.1634/theoncologist.2017-0535

  101. V. Guarneri, P. Conte, Metastatic breast cancer: therapeutic options according to molecular subtypes and prior adjuvant therapy. Oncologist 14(7), 645–656 (2009). https://doi.org/10.1634/theoncologist.2009-0078

    Article  Google Scholar 

  102. H. Kennecke, R. Yerushalmi, R. Woods, M.C. Cheang, D. Voduc, C.H. Speers et al., Metastatic behavior of breast cancer subtypes. J Clin Oncol 28(20), 3271–3277 (2010). https://doi.org/10.1200/jco.2009.25.9820

    Article  Google Scholar 

  103. S. Dwivedi, P. Purohit, R. Misra, M. Lingeswaran, J.R. Vishnoi, P. Pareek, et al.,Chapter 5—Application of single-cell omics in breast cancer, in Single-Cell Omics, ed. by D. Barh, V. Azevedo (Academic Press, 2019), pp. 69–103. https://doi.org/10.1016/B978-0-12-817532-3.00005-0

  104. Z.-H. Li, P.-H. Hu, J.-H. Tu, N.-S. Yu, Luminal B breast cancer: patterns of recurrence and clinical outcome. Oncotarget 7(40), 65024–65033 (2016). https://doi.org/10.18632/oncotarget.11344

    Article  Google Scholar 

  105. B. Tran, P.L. Bedard, Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res. 13(6), 221 (2011). https://doi.org/10.1186/bcr2904

    Article  Google Scholar 

  106. M.J. Ellis, Y. Tao, J. Luo, R. A’Hern, D.B. Evans, A.S. Bhatnagar et al., Outcome prediction for estrogen receptor-positive breast cancer based on postneoadjuvant endocrine therapy tumor characteristics. J. Natl. Cancer Inst. 100(19), 1380–1388 (2008). https://doi.org/10.1093/jnci/djn309

    Article  Google Scholar 

  107. R. Bhargava, S. Beriwal, D.J. Dabbs, U. Ozbek, A. Soran, R.R. Johnson et al., Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer 116(6), 1431–1439 (2010). https://doi.org/10.1002/cncr.24876

    Article  Google Scholar 

  108. S. Paik, S. Shak, G. Tang, C. Kim, J. Baker, M. Cronin et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351(27), 2817–2826 (2004). https://doi.org/10.1056/NEJMoa041588

    Article  Google Scholar 

  109. J.S. Parker, A. Prat, M. Cheang, M. Lenburg, S. Paik, C.J.C.R. Perou, Breast cancer molecular subtypes predict response to anthracycline/taxane-based chemotherapy, 69(24 Suppl 3) (2009)

    Google Scholar 

  110. B. Weigelt, A. Mackay, R. A’Hern, R. Natrajan, D.S. Tan, M. Dowsett et al., Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 11(4), 339–349 (2010). https://doi.org/10.1016/s1470-2045(10)70008-5

    Article  Google Scholar 

  111. L. Yin, J.-J. Duan, X.-W. Bian, S.-C. Yu, Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22(1), 61 (2020). https://doi.org/10.1186/s13058-020-01296-5

    Article  Google Scholar 

  112. J.J. de Ronde, J. Hannemann, H. Halfwerk, L. Mulder, M.E. Straver, M.J. Vrancken Peeters, et al., Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res. Treat 119(1), 119–126 (2010). https://doi.org/10.1007/s10549-009-0499-6

  113. U. Krishnamurti, J.F. Silverman, HER2 in breast cancer: a review and update. Adv. Anat. Pathol. 21(2) (2014). https://journals.lww.com/anatomicpathology/Fulltext/2014/03000/HER2_in_Breast_Cancer__A_Review_and_Update.4.aspx

  114. J.S. Ross, J.A. Fletcher, G.P. Linette, J. Stec, E. Clark, M. Ayers et al., The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8(4), 307–325 (2003). https://doi.org/10.1634/theoncologist.8-4-307

    Article  Google Scholar 

  115. J. Wang, B. Xu, Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther. 4(1), 34 (2019). https://doi.org/10.1038/s41392-019-0069-2

    Article  MathSciNet  Google Scholar 

  116. B. Kreike, M. van Kouwenhove, H. Horlings, B. Weigelt, H. Peterse, H. Bartelink et al., Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9(5), R65 (2007). https://doi.org/10.1186/bcr1771

    Article  Google Scholar 

  117. E.A. Rakha, S.E. Elsheikh, M.A. Aleskandarany, H.O. Habashi, A.R. Green, D.G. Powe et al., Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin. Cancer Res. 15(7), 2302–2310 (2009). https://doi.org/10.1158/1078-0432.Ccr-08-2132

    Article  Google Scholar 

  118. E.R. Myers, P. Moorman, J.M. Gierisch, L.J. Havrilesky, L.J. Grimm, S. Ghate et al., Benefits and harms of breast cancer screening: a systematic review. JAMA 314(15), 1615–1634 (2015). https://doi.org/10.1001/jama.2015.13183

    Article  Google Scholar 

  119. M. Román, M. Sala, L. Domingo, M. Posso, J. Louro, X. Castells, Personalized breast cancer screening strategies: a systematic review and quality assessment. PLoS One 14(12), e0226352 (2019). https://doi.org/10.1371/journal.pone.0226352

    Article  Google Scholar 

  120. M. Escala-Garcia, A. Morra, S. Canisius, J. Chang-Claude, S. Kar, W. Zheng, et al., Breast cancer risk factors and their effects on survival: a Mendelian randomisation study. BMC Med. 18(1), 327 (2020). https://doi.org/10.1186/s12916-020-01797-2

  121. M.R. Ataollahi, J. Sharifi, M.R. Paknahad, A. Paknahad, Breast cancer and associated factors: a review. J. Med. Life 8(Special Issue 4), 6–11 (2015)

    Google Scholar 

  122. Y.-S. Sun, Z. Zhao, Z.-N. Yang, F. Xu, H.-J. Lu, Z.-Y. Zhu et al., Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 13(11), 1387–1397 (2017). https://doi.org/10.7150/ijbs.21635

    Article  Google Scholar 

  123. S. Raichand, A.G. Dunn, M.-S. Ong, F.T. Bourgeois, E. Coiera, K.D. Mandl, Conclusions in systematic reviews of mammography for breast cancer screening and associations with review design and author characteristics. Syst. Rev. 6(1), 105 (2017). https://doi.org/10.1186/s13643-017-0495-6

    Article  Google Scholar 

  124. M. Broeders, S. Moss, L. Nyström, S. Njor, H. Jonsson, E. Paap, et al., The impactof mammographic screening on breast cancer mortality in Europe: a review of observational studies. J. Med. Screen 19(Suppl 1), 14–25 (2012). https://doi.org/10.1258/jms.2012.012078

  125. C. van den Ende, A.M. Oordt-Speets, H. Vroling, H.M.E. van Agt, Benefits and harms of breast cancer screening with mammography in women aged 40–49 years: a systematic review. Int. J. Cancer 141(7), 1295–1306 (2017). https://doi.org/10.1002/ijc.30794

    Article  Google Scholar 

  126. H.G. Welch, P.C. Prorok, A.J. O’Malley, B.S. Kramer, Breast-cancer tumor size. Overdiag. Mammogr. Screen. Effect. 375(15), 1438–1447 (2016). https://doi.org/10.1056/NEJMoa1600249

    Article  Google Scholar 

  127. J.S. Mandelblatt, N.K. Stout, C.B. Schechter, J.J. van den Broek, D.L. Miglioretti, M. Krapcho, et al., Collaborative modeling of the benefits and harms associated with different U.S. breast cancer screening strategies. Ann. Intern. Med. 164(4), 215–225 (2016). https://doi.org/10.7326/m15-1536

  128. E. Warner, H. Messersmith, P. Causer, A. Eisen, R. Shumak, D. Plewes, Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann. Intern. Med. 148(9), 671–679 (2008). https://doi.org/10.7326/0003-4819-148-9-200805060-00007

    Article  Google Scholar 

  129. S. Radhakrishna, S. Agarwal, P.M. Parikh, K. Kaur, S. Panwar, S. Sharma et al., Role of magnetic resonance imaging in breast cancer management. South Asian J Cancer 7(2), 69–71 (2018). https://doi.org/10.4103/sajc.sajc_104_18

    Article  Google Scholar 

  130. L.W. Turnbull, Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed. 22(1), 28–39 (2009). https://doi.org/10.1002/nbm.1273

    Article  Google Scholar 

  131. J. Xiao, H. Rahbar, D.S. Hippe, M.H. Rendi, E.U. Parker, N. Shekar, et al., Dynamic contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis. npj Breast Cancer 7(1), 42 (2021). https://doi.org/10.1038/s41523-021-00247-3

  132. N. Amornsiripanitch, S. Bickelhaupt, H.J. Shin, M. Dang, H. Rahbar, K. Pinker, et al., Diffusion-weighted MRI for unenhanced breast cancer screening, 293(3), 504–520 (2019). https://doi.org/10.1148/radiol.2019182789

  133. S.C. Partridge, N. Amornsiripanitch, DWI in the assessment of breast lesions. Top. Magn. Reson. Imaging: TMRI 26(5), 201–209 (2017). https://doi.org/10.1097/RMR.0000000000000137

    Article  Google Scholar 

  134. S.C. Partridge, E.S. McDonald, Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn. Reson. Imaging Clin. N. Am. 21(3), 601–624 (2013). https://doi.org/10.1016/j.mric.2013.04.007

    Article  Google Scholar 

  135. J.K.P. Begley, T.W. Redpath, P.J. Bolan, F.J. Gilbert, In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Res. 14(2), 207 (2012). https://doi.org/10.1186/bcr3132

    Article  Google Scholar 

  136. M.A. Bilal Ahmadani, S. Bhatty, Z.U. Abideen, M.S. Yaseen, T. Laique, J. Malik, Imaging in breast cancer: use of magnetic resonance spectroscopy.Cureus (2020). https://doi.org/10.7759/cureus.9734

  137. W.A. Berg, Nuclear breast imaging: clinical results and future directions. J. Nucl. Med. 57(Supplement 1), 46S (2016). https://doi.org/10.2967/jnumed.115.157891

    Article  Google Scholar 

  138. L.R. Greene, D. Wilkinson, The role of general nuclear medicine in breast cancer. J. Med. Radiat. Sci. 62(1), 54–65 (2015). https://doi.org/10.1002/jmrs.97

  139. A. Daskin, A simple quantum neural net with a periodic activation function, in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 7–10 October 2018, pp. 2887–2891

    Google Scholar 

  140. N. Mishra, A. Bisarya, S. Kumar, B.K. Behera, S. Mukhopadhyay, P.K. Panigrahi, Cancer detection using quantum neural networks: a demonstration on a quantum computer (2019)

    Google Scholar 

  141. V. Azevedo, C. Silva, I. Dutra, Quantum transfer learning for breast cancerdetection. Quant. Mach. Intell. 4(1), 1–14 (2022b)

    Google Scholar 

  142. H.G. Kim, Y. Choi, Y.M. Ro, Modality-Bridge Transfer Learning for Medical Image Classification (IEEE, 2017), pp. 1–5

    Google Scholar 

  143. C.-K. Shie, C.-H. Chuang, C.-N. Chou, M.-H. Wu, E.Y. Chang, Transfer RepresentationLearning for Medical Image Analysis (IEEE, 2015), pp. 711–714

    Google Scholar 

  144. M.A. Morid, A. Borjali, G. Del Fiol, A scoping review of transfer learning research on medical image analysis using ImageNet. Comput. Biol. Med. 128, 104115 (2021)

    Google Scholar 

  145. S. Lu, Z. Lu, Y.-D. Zhang, Pathological brain detection based on AlexNet and transfer learning. J. Comput. Sci. 30, 41–47 (2019). https://doi.org/10.1016/j.jocs.2018.11.008

    Article  Google Scholar 

  146. S.-H. Wang, S. Xie, X. Chen, D.S. Guttery, C. Tang, J. Sun, et al., Alcoholism identification based on an AlexNet transfer learning model (original research), 10 (2019). https://doi.org/10.3389/fpsyt.2019.00205

  147. P. Dauphin-Ducharme, K. Yang, N. Arroyo-Currás, K.L. Ploense, Y. Zhang, J. Gerson, et al., Electrochemical aptamer-based sensors for improved therapeutic drug monitoring and high-precision, feedback-controlled drug delivery. ACS Sens. 4(10), 2832–2837 (2019). https://doi.org/10.1021/acssensors.9b01616

  148. E.L. Omonigho, M. David, A. Adejo, S. Aliyu, Breast cancer: tumor detectionin mammogram images using modified AlexNet deep convolution neural network, in 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), 18–21 March 2020, pp. 1–6

    Google Scholar 

  149. F. Yan, X. Huang, Y. Yao, M. Lu, M. Li, Combining LSTM and DenseNet for automatic annotation and classification of chest x-ray images. IEEE Access 7, 74181–74189 (2019). https://doi.org/10.1109/ACCESS.2019.2920397

    Article  Google Scholar 

  150. F. Nunnari, C. Bhuvaneshwara, A.O. Ezema, D. Sonntag, A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images, in Machine Learning and Knowledge Extraction, ed. by A. Holzinger, P. Kieseberg, A.M. Tjoa, E. Weippl (Springer International Publishing, Cham, 2020), pp. 191–208

    Google Scholar 

  151. P.U. Hepsağ, S.A. Özel, A. Yazıcı, Using deep learning for mammography classification, 418–423 (2017)

    Google Scholar 

  152. J. Diz, G. Marreiros, A. Freitas, Applying data mining techniques to improve breast cancer diagnosis. J. Med. Syst. 40(9), 203 (2016). https://doi.org/10.1007/s10916-016-0561-y

    Article  Google Scholar 

  153. V. Azevedo, C. Silva, I. Dutra, Quantum transfer learning for breast cancer detection. Quant. Mach. Intell. 4(1), 5 (2022a). https://doi.org/10.1007/s42484-022-00062-4

  154. A. Ahuja, L. Al-Zogbi, A. Krieger, Application of noise-reduction techniques tomachine learning algorithms for breast cancer tumor identification. Comput. Biol. Med. 135, 104576 (2021). https://doi.org/10.1016/j.compbiomed.2021.104576

  155. K. Gupta, R.R. Janghel, Dimensionality reduction-based breast cancer classification using machine learning, in Computational Intelligence: Theories, Applications and Future Directions—Volume I, ed. by N.K. Verma, & A.K. Ghosh (Springer, Singapore, 2019), pp. 133–146

    Google Scholar 

  156. D.A. Omondiagbe, S. Veeramani, A.S. Sidhu, Machine learning classification techniques for breast cancer diagnosis. IOP Conference Series: Materials Science and Engineering 495, 012033 (2019). https://doi.org/10.1088/1757-899x/495/1/012033

    Article  Google Scholar 

  157. M.F. Akay, Support vector machines combined with feature selection for breast cancer diagnosis. Exp. Syst. Appl. 36(2, Part 2), 3240–3247 (2009). https://doi.org/10.1016/j.eswa.2008.01.009

  158. A.T. Azar, S.A. El-Said, Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput. Appl. 24(5), 1163–1177 (2014). https://doi.org/10.1007/s00521-012-1324-4

    Article  Google Scholar 

  159. B.M. Salih Hasan, A.M. Abdulazeez, A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comput. Data Min. 2(1), 20–30. https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/8032

  160. M.D. Ritchie, L.W. Hahn, N. Roodi, L.R. Bailey, W.D. Dupont, F.F. Parl et al., Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001). https://doi.org/10.1086/321276

    Article  Google Scholar 

  161. X. Liu, J. Shi, S. Zhou, M. Lu, An iterated Laplacian based semi-superviseddimensionality reduction for classification of breast cancer on ultrasound images, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 26–30 August 2014, pp. 4679–4682

    Google Scholar 

  162. C. Deisy, B. Subbulakshmi, S. Baskar, N Ramaraj, Efficient dimensionalityreduction approaches for feature selection, in International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), 13–15 December 2007, pp. 121–127

    Google Scholar 

  163. A. Jamal, A. Handayani, A.A. Septiandri, E. Ripmiatin, Y. Effendi, Dimensionality reduction using PCA and k-means clustering for breast cancer prediction. Lontar Komput. J. Ilm. Teknol. Inf 9(3), 192–201 (2018)

    Article  Google Scholar 

  164. W.S. Noble, What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  Google Scholar 

  165. S. Suthaharan, Support vector machine, in Machine Learning Models and Algorithms for Big Data Classification (Springer, 2016), pp. 207–235

    Google Scholar 

  166. A. Widodo, B.-S. Yang, Support vector machine in machine condition monitoring and fault diagnosis, 21(6), 2560–2574 (2007)

    Google Scholar 

  167. D.A. Pisner, D.M. Schnyer, Support Vector Machine. Machine Learning. (Elsevier, 2020), pp. 101–121

    Google Scholar 

  168. T. Joachims, SVM light is an implementation of support vector machines (SVMs), in C. University of Dortmund, Collaborative Research Center on Complexity Reduction in Multivariate Data (SFB475); gmd.de/∼thorsten/svm_light (2000)

    Google Scholar 

  169. H.X. Liu, R.S. Zhang, F. Luan, X.J. Yao, M.C. Liu, Z.D. Hu et al., Diagnosing breast cancer based on support vector machines. J. Chem. Inf. Comput. Sci. 43(3), 900–907 (2003). https://doi.org/10.1021/ci0256438

    Article  Google Scholar 

  170. M.E. Ozer, P.O. Sarica, K.Y. Arga, New machine learning applications to accelerate personalized medicine in breast cancer: rise of the support vector machines. Omics: J. Integrative Biol. 24(5), 241–246 (2020)

    Google Scholar 

  171. S. Ghosh,S. Mondal, B. Ghosh, A Comparative Study of Breast Cancer Detection Based on SVM and MLP BPN Classifier (IEEE, 2014), pp. 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigna B. Prajapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prajapati, J.B., Paliwal, H., Prajapati, B.G., Saikia, S., Pandey, R. (2023). Quantum Machine Learning in Prediction of Breast Cancer. In: Pandey, R., Srivastava, N., Singh, N.K., Tyagi, K. (eds) Quantum Computing: A Shift from Bits to Qubits. Studies in Computational Intelligence, vol 1085. Springer, Singapore. https://doi.org/10.1007/978-981-19-9530-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-9530-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-9529-3

  • Online ISBN: 978-981-19-9530-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics