Skip to main content

kNN-SVM with Deep Features for COVID-19 Pneumonia Detection from Chest X-ray

  • Conference paper
  • First Online:
Mathematics and Computing (ICMC 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 415))

Included in the following conference series:

Abstract

Most attention has been paid to chest Computed Tomography (CT) in this burgeoning crisis because many cases of COVID-19 demonstrate respiratory illness clinically resembling viral pneumonia which persists in prominent visual signatures on high-resolution CT befitting of viruses that damage lungs. However, CT is very expensive, time-consuming, and inaccessible in remote hospitals. As an important complement, this research proposes a novel kNN-regularized Support Vector Machine (kNN-SVM) algorithm for identifying COVID-induced pneumonia from inexpensive and simple frontal chest X-ray (CXR). To compute the deep features, we used transfer learning on the standard VGG16 model. Then the autoencoder algorithm is used for dimensionality reduction. Finally, a novel kNN-regularized Support Vector Machine algorithm is developed and implemented which can successfully classify the three classes: Normal, Pneumonia, and COVID-19 on a benchmark chest X-ray dataset. kNN-SVM combines the properties of two well-known formalisms: k-Nearest Neighbors (kNN) and Support Vector Machines (SVMs). Our approach extends the total-margin SVM, which considers the distance of all points from the margin; each point is weighted based on its k nearest neighbors. The intuition is that examples that are mostly surrounded by similar neighbors, i.e., of their own class, are given more priority to minimize the influence of drastic outliers and improve generalization and robustness. Thus, our approach combines the local sensitivity of kNN with the global stability of the total-margin SVM. Extensive experimental results demonstrate that the proposed kNN-SVM can detect COVID-19-induced pneumonia from chest X-ray with greater or comparable accuracy relative to human radiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S.E.A.: Reconet: Multi-level preprocessing of chest x-rays for covid-19 detection using convolutional neural networks. MedRxiv (2020)

    Google Scholar 

  2. Al-Waisy, A.S.E.A.: Covid-chexnet: hybrid deep learning framework for identifying covid-19 virus in chest x-rays images. Soft Comput. 1–16 (2020)

    Google Scholar 

  3. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43(2), 635–640 (2020)

    Article  Google Scholar 

  4. Bassi, P.R., Attux, R.: A deep convolutional neural network for covid-19 detection using chest x-rays. Res. Biomed. Eng. 1–10 (2021)

    Google Scholar 

  5. Belkin, M. et al.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Mach. Learn. Res. 7, 2399–2434 (2006)

    Google Scholar 

  6. Bernheim, A.E.A.: Chest CT findings in coronavirus disease-19 (covid-19): relationship to duration of infection. Radiology 200463 (2020)

    Google Scholar 

  7. Brunese, L., Mercaldo, F., Reginelli, A., Santone, A.: Explainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-rays. Comput. Methods Prog. Biomed. 196, 105608 (2020)

    Article  Google Scholar 

  8. Cheng, H., Tan, P.N., Jin, R.: Efficient algorithm for localized support vector machine. IEEE Trans. Knowl. Data Eng. 22(4), 537–549 (2010)

    Google Scholar 

  9. Cohen, J.P., Morrison, P., Dao, L.: Covid-19 image data collection (2020). arXiv:2003.11597. https://github.com/ieee8023/covid-chestxray-dataset

  10. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  11. Crammer, K., Singer, Y., Cristianini, N., Shawe-taylor, J., Williamson, B.: On the algorithmic implementation of multiclass kernel-based vector machines. Mach. Learn. Res. 265–292 (2001)

    Google Scholar 

  12. Das, N.N.E.A.: Automated deep transfer learning-based approach for detection of covid-19 infection in chest x-rays. IRBM (2020)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  14. Hable, R.: Universal consistency of localized versions of regularized kernel methods. J. Mach. Learn. Res. 14(1), 153–186 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer (2009)

    Google Scholar 

  16. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)

    Article  Google Scholar 

  17. Jaiswal, A.K., Tiwari, P., Rathi, V.K., Qian, J., Pandey, H.M., Albuquerque, V.H.C.: Covidpen: a novel covid-19 detection model using chest x-rays and CT scans. Medrxiv (2020)

    Google Scholar 

  18. Kunapuli, G., Shavlik, J.: Mirror descent for metric learning: a unified approach. In: Proceedings of the ECML ’12, pp. 859–874 (2012)

    Google Scholar 

  19. Ladicky, L., Torr, P.H.S.: Locally linear support vector machines. In: ICML, pp. 985–992 (2011)

    Google Scholar 

  20. Liu, Y.H. et al.: Face recognition using total margin-based adaptive fuzzy support vector machines. IEEE Trans. Neural Netw. 18(1), 178–192 (2007)

    Google Scholar 

  21. Lv, D., Qi, W., Li, Y., Sun, L., Wang, Y.: A cascade network for detecting covid-19 using chest x-rays (2020). arXiv:2005.01468

  22. Mei, X., Lee, H.C., Diao, K.y., Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson, P.M., Chung, M. et al.: Artificial intelligence–enabled rapid diagnosis of patients with covid-19. Nat. Med. 26(8), 1224–1228 (2020)

    Google Scholar 

  23. Mooney, P.: Kaggle dataset: chest x-ray images (pneumonia) (2017). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

  24. Nakayama, H., Yun, Y.: Generating support vector machines using multi-objective optimization and goal programming. In: Jin, Y. (ed.), Multi-Objective Machine Learning, pp. 173–198. Springer (2006)

    Google Scholar 

  25. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput. Biol. Med. 121, 103792 (2020)

    Article  Google Scholar 

  26. Panwar, H., Gupta, P., Siddiqui, M.K., Morales-Menendez, R., Singh, V.: Application of deep learning for fast detection of covid-19 in x-rays using ncovnet. Chaos Solitons Fract. 138, 109944 (2020)

    Article  MathSciNet  Google Scholar 

  27. Pham, T.D.: Classification of covid-19 chest x-rays with deep learning: new models or fine tuning? Health Inf. Sci. Syst. 9(1), 1–11 (2021)

    Article  Google Scholar 

  28. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning (2017). arXiv:1711.05225

  29. Salman, F.M., Abu-Naser, S.S., Alajrami, E., Abu-Nasser, B.S., Alashqar, B.A.: Covid-19 detection using artificial intelligence (2020)

    Google Scholar 

  30. Segata, N., Blanzieri, E., Bottou, L.: Fast and scalable local kernel machines. J. Mach. Learn. Res. 1883 (2009)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556

  32. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  33. Tsochantaridis, I. et al.: Support vector machine learning for interdependent and structured output spaces. In: In ICML (2004)

    Google Scholar 

  34. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  35. Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., Pinheiro, P.R.: Covidgan: data augmentation using auxiliary classifier gan for improved covid-19 detection. IEEE Access 8, 91916–91923 (2020)

    Article  Google Scholar 

  36. Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neurocomputing 184, 232–242 (2016)

    Article  Google Scholar 

  37. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009). http://dl.acm.org/citation.cfm?id=1577069.1577078

  38. Xu, H., Caramanis, C., Mannor, S.: Robustness and regularization of support vector machines. J. Mach. Learn. Res. 10, 1485–1510 (2009). http://dl.acm.org/citation.cfm?id=1577069.1755834

  39. Xu, L., Schuurmans, D.: Unsupervised and semi-supervised multi-class support vector machines. In: National Conference on Artificial Intelligence. pp. 904–910. AAAI (2005). http://dl.acm.org/citation.cfm?id=1619410.1619478

  40. Yoon, M., Yun, Y., Nakayama, H.: A role of total margin in support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 2049–2053 (2003). https://doi.org/10.1109/IJCNN.2003.1223723

  41. Zhang, H.E.A.: Svm-knn: discriminative nearest neighbor classification for visual category recognition. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. CVPR ’06 (2006)

    Google Scholar 

  42. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines. Technical report, Advances in Neural Information Processing Systems (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baidya Nath Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bahuguna, A., Yadav, D., Senapati, A., Nath Saha, B. (2022). kNN-SVM with Deep Features for COVID-19 Pneumonia Detection from Chest X-ray. In: Rushi Kumar, B., Ponnusamy, S., Giri, D., Thuraisingham, B., Clifton, C.W., Carminati, B. (eds) Mathematics and Computing. ICMC 2022. Springer Proceedings in Mathematics & Statistics, vol 415. Springer, Singapore. https://doi.org/10.1007/978-981-19-9307-7_9

Download citation

Publish with us

Policies and ethics