Skip to main content

Lactic Acid Production from Fungal Machineries and Mechanism of PLA Synthesis: Application of AI-Based Technology for Improved Productivity

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology

Abstract

Lactic acid production and its polymerization to poly-lactide (PLA) using renewable resources have recently gained advancement in the field of biomedical science. It is greeted as a promising alternative to tackle the alarmingly environmental, economical and technological issues raised from excessive use of petroleum-based plastics. PLA due to its good processability and biocompatibility always has fascinated researchers in the clinical sector, yet its high degree of hydrophobicity and absence of reactive groups cause steric hindrance and impeded biofunctionalization of PLA surface for cell attachment. PLA production from renewable resources showed a significant reduction in greenhouse gas emissions and fossil energy use as compared to conventional petrochemical-based polymers, thus reducing the threat of global warming. Although lactic acid production from lactic acid bacteria (LAB) is an illustrious domain, production of the green chemical using fungal biomachineries is yet a domain to be explored. Artificial intelligence (AI), a high-tech next-generation technology, is being adapted in all research fields starting from big data analysis to personalized medicines. AI-based mycology modelling for lactic acid production unlocks new prospects for the researcher. The present article is an attempt to explain the potentials of lactic acid production using fungal machineries for sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu H, He AY, Kong XP, Jiang M, Chen XP, Zhu DW, Liu GP, Jin WQ (2015) Acetone–butanol–ethanol production using pH control strategy and immobilized cells in an integrated fermentation–pervaporation process. Process Biochem 50(4):614–622. https://doi.org/10.1016/j.procbio.2014.12.006

    Article  CAS  Google Scholar 

  2. Talaia G, Gournas C, Saliba E, Barata-Antunes C, Casal M, André B, Diallinas G, Paiva S (2017) The α-arrestin Bul1p mediates lactate transporter endocytosis in response to alkalinization and distinct physiological signals. J Mol Biol 429(23):3678–3695. https://doi.org/10.1016/j.jmb.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  3. Balla E, Daniilidis V, Karlioti G, Kalamas T, Stefanidou M, Bikiaris ND, Vlachopoulous A, Koumentakou I, Bikiaris DN (2021) Poly (lactic acid): a versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 13(11):1822. https://doi.org/10.3390/polym13111822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez FAC, Balciunas EM, Salgado JM, Gonzalez JMD, Converti A, de Souza Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30(1):70–83. https://doi.org/10.1016/j.tifs.2012.11.007

    Article  CAS  Google Scholar 

  5. Narayanan N, Roychoudhury PK, Srivastava A (2004) L (+) lactic acid fermentation and its product polymerization. Electron J Biotechnol 7(2):167–178. https://doi.org/10.4067/S0717-34582004000200008

    Article  Google Scholar 

  6. Chen L, Zeng A, Dong H, Li Q, Niu C (2012) A novel process for recovery and refining of L-lactic acid from fermentation broth. Bioresour Technol 112:280–284. https://doi.org/10.1016/j.biortech.2012.02.100

    Article  CAS  PubMed  Google Scholar 

  7. Igoe RS (2011) Dictionary of food ingredients. Springer Science & Business Media

    Book  Google Scholar 

  8. Mohanty JN, Das PK, Nanda S, Nayak P, Pradhan P (2015) Comparative analysis of crude and pure lactic acid produced by lactobacillus fermentum and its inhibitory effects on spoilage bacteria. The pharma. Innovations 3(11, Part A):38

    Google Scholar 

  9. Vaidya AN, Pandey RA, Mudliar S, Kumar MS, Chakrabarti T, Devotta S (2005) Production and recovery of lactic acid for polylactide—an overview. Crit Rev Environ Sci Technol 35(5):429–467. https://doi.org/10.1080/10643380590966181

    Article  CAS  Google Scholar 

  10. Komesu A, de Oliveira JAR, da Silva Martins LH, Maciel MRW, Maciel Filho R (2017) Lactic acid production to purification: a review. Bioresources 12(2):4364–4383

    Article  CAS  Google Scholar 

  11. Wang L, & Yang ST (2007) Solid state fermentation and its applications. Bioprocessing for value-added products from renewable resources, 465-489. DOI:https://doi.org/10.1016/B978-044452114-9/50019-0

  12. Panesar PS, Kaur S (2015) Bioutilisation of agro-industrial waste for lactic acid production. Int J Food Sci Technol 50(10):2143–2151. https://doi.org/10.1111/ijfs.12886

    Article  CAS  Google Scholar 

  13. Gleason FH, Price JS (1969) Lactic acid fermentation in lower fungi. Mycologia 61(5):945–956. https://doi.org/10.1080/00275514.1969.12018817

    Article  CAS  PubMed  Google Scholar 

  14. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35(3):251–263. https://doi.org/10.1016/j.bej.2007.01.028

    Article  CAS  Google Scholar 

  15. Krishna BS, Nikhilesh GSS, Tarun B, Saibaba N, Gopinadh R (2018) Industrial production of lactic acid and its applications. Int J Biotechnol Res 1:42–54

    Google Scholar 

  16. Gao C, Ma C, Xu P (2011) Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 29(6):930–939. https://doi.org/10.1016/j.biotechadv.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Wang Y, Yang ST, Wang R, Ren H (2010) A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae. Bioresour Technol 101(14):5557–5564. https://doi.org/10.1016/j.biortech.2010.02.064

    Article  CAS  PubMed  Google Scholar 

  18. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423. https://doi.org/10.1007/s00253-009-2280-5

    Article  CAS  PubMed  Google Scholar 

  19. Das M, Kundu D, Rastogi A, Singh J, Banerjee R (2018) Biotechnological exploitation of poly-lactide produced from cost effective lactic acid. Principles and applications of fermentation technology, vol 18. Wiley, Hoboken, NJ, pp 401–416. https://doi.org/10.1002/9781119460381.ch18

    Book  Google Scholar 

  20. Mayo B, Aleksandrzak-Piekarczyk T, Fernández M, Kowalczyk M, Álvarez-Martín P, & Bardowski J (2010) Updates in the metabolism of lactic acid bacteria. Biotechnology of lactic acid bacteria: Novel applications, 3-33. https://doi.org/10.1002/9780813820866.ch1

  21. Juturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36(6):967–977. https://doi.org/10.3109/07388551.2015.1066305

    Article  CAS  PubMed  Google Scholar 

  22. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31(6):877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  23. Abedi E, Hashemi SMB (2020) Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 6(10):e04974. https://doi.org/10.1016/j.heliyon.2020.e04974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ge XY, Qian H, Zhang WG (2009) Improvement of l-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour Technol 100(5):1872–1874. https://doi.org/10.1016/j.biortech.2008.09.049

    Article  CAS  PubMed  Google Scholar 

  25. John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152. https://doi.org/10.1016/j.biotechadv.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  26. Thitiprasert S, Sooksai S, Thongchul N (2011) In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation. Appl Biochem Biotechnol 164(8):1305–1322. https://doi.org/10.1007/s12010-011-9214-2

    Article  CAS  PubMed  Google Scholar 

  27. van Maris AJ, Konings WN, van Dijken JP, Pronk JT (2004) Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6(4):245–255. https://doi.org/10.1016/j.ymben.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Casal M, Queirós O, Talaia G, Ribas D, & Paiva S (2016) Carboxylic acids plasma membrane transporters in Saccharomyces cerevisiae. Yeast membrane transport, 229-251.DOI: https://doi.org/10.1007/978-3-319-25304-6_9

  29. Hettema EH, Van Roermund CW, Distel B, van den Berg M, Vilela C, Rodrigues-Pousada C, Wanders RJ, Tabak HF (1996) The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae. EMBO J 15(15):3813–3822. https://doi.org/10.1002/j.1460-2075.1996.tb00755.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okorokov LA, Kulakovskaya TV, Lichko LP, Polorotova EV (1985) H+/ion antiport as the principal mechanism of transport systems in the vacuolar membrane of the yeast Saccharomyces carlsbergensis. FEBS Lett 192(2):303–306. https://doi.org/10.1016/0014-5793(85)80130-7

    Article  CAS  PubMed  Google Scholar 

  31. Grobler J, Bauer F, Subden RE, Van Vuuren HJ (1995) The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11(15):1485–1491. https://doi.org/10.1002/yea.320111503

    Article  CAS  PubMed  Google Scholar 

  32. Casal M, Paiva S, Andrade RP, Gancedo C, Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181(8):2620–2623. https://doi.org/10.1128/JB.181.8.2620-2623.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wakamatsu M, Tomitaka M, Tani T, Taguchi H, Kida K, Akamatsu T (2013) Improvement of ethanol production from D-lactic acid by constitutive expression of lactate transporter Jen1p in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 77(5):1114–1116. https://doi.org/10.1271/bbb.120985

    Article  CAS  PubMed  Google Scholar 

  34. Soares-Silva I, Sá-Pessoa J, Myrianthopoulos V, Mikros E, Casal M, Diallinas G (2011) A substrate translocation trajectory in a cytoplasm-facing topological model of the monocarboxylate/H+ symporter Jen1p. Mol Microbiol 81(3):805–817. https://doi.org/10.1111/j.1365-2958.2011.07729.x

    Article  CAS  PubMed  Google Scholar 

  35. Soares-Silva I, Paiva S, Diallinas G, Casal M (2007) The conserved sequence NXX [S/T] HX [S/T] QDXXXT of the lactate/pyruvate: H+ symporter subfamily defines the function of the substrate translocation pathway. Mol Membr Biol 24(5–6):464–474. https://doi.org/10.1080/09687680701342669

    Article  CAS  PubMed  Google Scholar 

  36. Alves R, Sousa-Silva M, Vieira D, Soares P, Chebaro Y, Lorenz MC, Casai M, Soares-Silva, Paiva S (2020) Carboxylic acid transporters in Candida pathogenesis. MBio 11(3):e00156–e00120. https://doi.org/10.1128/mBio.00156-20

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andrade RP, Casal M (2001) Expression of the lactate permease gene JEN1 from the yeast Saccharomyces cerevisiae. Fungal Genet Biol 32(2):105–111. https://doi.org/10.1006/fgbi.2001.1254

    Article  CAS  PubMed  Google Scholar 

  38. Sanz P, Alms GR, Haystead TA, Carlson M (2000) Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20(4):1321–1328. https://doi.org/10.1128/MCB.20.4.1321-1328.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haurie V, Perrot M, Mini T, Jenö P, Sagliocco F, Boucherie H (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276(1):76–85. https://doi.org/10.1074/jbc.M008752200

    Article  CAS  PubMed  Google Scholar 

  40. Olesen JT, Guarente L (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex. Genes Dev 4(10):1714–1729. https://doi.org/10.1101/gad.4.10.1714

    Article  CAS  PubMed  Google Scholar 

  41. Mota S, Vieira N, Barbosa S, Delaveau T, Torchet C, Le Saux A, Garcia M, Pereira A, Lemoine S, Couipier F, Darzacq X, Benard L, Casal M, Devaux F, Paiva S (2014) Role of the DHH1 gene in the regulation of monocarboxylic acids transporters expression in Saccharomyces cerevisiae. PLoS One 9(11):e111589. https://doi.org/10.1371/journal.pone.0111589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Becuwe M, Vieira N, Lara D, Gomes-Rezende J, Soares-Cunha C, Casal M, Haguenauer-Tsapis R, Vincent O, Paiva S, Léon S (2012) A molecular switch on an arrestin-like protein relays glucose signalling to transporter endocytosis. J Cell Biol 196(2):247–259. https://doi.org/10.1083/jcb.201109113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paiva S, Vieira N, Nondier I, Haguenauer-Tsapis R, Casal M, Urban-Grimal D (2009) Glucose-induced ubiquitylation and endocytosis of the yeast Jen1 transporter: role of lysine 63-linked ubiquitin chains. J Biol Chem 284(29):19228–19236. https://doi.org/10.1074/jbc.M109.008318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Kok S, Nijkamp JF, Oud B, Roque FC, de Ridder D, Daran JM, Pronk JT, van Maris AJ (2012) Laboratory evolution of new lactate transporter genes in a jen1 Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 12(3):359–374. https://doi.org/10.1111/j.1567-1364.2011.00787.x

    Article  CAS  PubMed  Google Scholar 

  45. Paiva S, Devaux F, Barbosa S, Jacq C, Casal M (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21(3):201–210. https://doi.org/10.1002/yea.1056

    Article  CAS  PubMed  Google Scholar 

  46. Augstein A, Barth K, Gentsch M, Kohlwein SD, Barth G (2003) Characterization, localization and functional analysis of Gpr1p, a protein affecting sensitivity to acetic acid in the yeast Yarrowia lipolytica. Microbiology 149(3):589–600. https://doi.org/10.1099/mic.0.25917-0

    Article  CAS  PubMed  Google Scholar 

  47. Ribas D, Soares-Silva I, Vieira D, Sousa-Silva M, Sa-Pessoa J, Azevedo-Silva J, Viegas SC, Arraiano CM, Diallinas G, Paiva S, Soares P, Casal M (2019) The acetate uptake transporter family motif “NPAPLGL (M/S)” is essential for substrate uptake. Fungal Genet Biol 122:1–10. https://doi.org/10.1016/j.fgb.2018.10.001

    Article  CAS  PubMed  Google Scholar 

  48. Pacheco A, Talaia G, Sá-Pessoa J, Bessa D, Gonçalves MJ, Moreira R, Paiva S, Casal M, Queirós O (2012) Lactic acid production in Saccharomyces cerevisiae is modulated by expression of the monocarboxylate transporters Jen1 and Ady2. FEMS Yeast Res 12(3):375–381. https://doi.org/10.1111/j.1567-1364.2012.00790.x

    Article  CAS  PubMed  Google Scholar 

  49. Turner TL, Lane S, Jayakody LN, Zhang GC, Kim H, Cho W, Jin YS (2019) Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase. FEMS Yeast Res 19(6):foz050. https://doi.org/10.1093/femsyr/foz050

    Article  CAS  PubMed  Google Scholar 

  50. Singh SK, Ahmed SU, Pandey A (2006) Metabolic engineering approaches for lactic acid production. Process Biochem 41(5):991–1000. https://doi.org/10.1016/j.procbio.2005.12.004

    Article  CAS  Google Scholar 

  51. Upadhyaya BP, DeVeaux LC, Christopher LP (2014) Metabolic engineering as a tool for enhanced lactic acid production. Trends Biotechnol 32(12):637–644. https://doi.org/10.1016/j.tibtech.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  52. Wakai S, Arazoe T, Ogino C, Kondo A (2017) Future insights in fungal metabolic engineering. Bioresour Technol 245:1314–1326. https://doi.org/10.1016/j.biortech.2017.04.095

    Article  CAS  PubMed  Google Scholar 

  53. Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26(3):171–177. https://doi.org/10.1038/sj.jim.7000090

    Article  CAS  PubMed  Google Scholar 

  54. Peetermans A, Foulquié-Moreno MR, Thevelein JM (2021) Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. Microbial. Cell 8(6):111. https://doi.org/10.15698/mic2021.06.751

    Article  CAS  Google Scholar 

  55. Sugiyama M, Akase SP, Nakanishi R, Kaneko Y, Harashima S (2016) Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae. J Biosci Bioeng 122(4):415–420. https://doi.org/10.1016/j.jbiosc.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  56. Zhong W, Yang M, Hao X, Sharshar MM, Wang Q, Xing J (2020) Improvement of D-lactic acid production at low pH through expressing acid-resistant gene IoGAS1 in engineered Saccharomyces cerevisiae. J Chem Technol Biotechnol 96(3):732–742. https://doi.org/10.1002/jctb.6587

    Article  CAS  Google Scholar 

  57. Baek SH, Kwon EY, Kim YH, Hahn JS (2015) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(6):2737–2748. https://doi.org/10.1007/s00253-015-7174-0

    Article  CAS  PubMed  Google Scholar 

  58. Kuanyshev N, Rao CV, Dien B, Jin YS (2020) Domesticating a food spoilage yeast into an organic acid-tolerant metabolic engineering host: lactic acid production by engineered Zygosaccharomyces bailii. Biotechnol Bioeng 118(1):372–382. https://doi.org/10.1002/bit.27576

    Article  CAS  PubMed  Google Scholar 

  59. Flikweert MT, de Swaaf M, van Dijken JP, Pronk JT (1999) Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae. FEMS Microbiol Lett 174(1):73–79. https://doi.org/10.1111/j.1574-6968.1999.tb13551.x

    Article  CAS  PubMed  Google Scholar 

  60. Song JY, Park JS, Kang CD, Cho HY, Yang D, Lee S, Cho KM (2016) Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae. Metab Eng 35:38–45. https://doi.org/10.1016/j.ymben.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  61. Zhong W, Yang M, Mu T, Wu F, Hao X, Chen R, Sharshar MM, Thygesen A, Wang Q, Xing J (2019) Systematically redesigning and optimizing the expression of D-lactate dehydrogenase efficiently produces high-optical-purity D-lactic acid in Saccharomyces cerevisiae. Biochem Eng J 144:217–226. https://doi.org/10.1016/j.bej.2018.09.013

    Article  CAS  Google Scholar 

  62. Yamada R, Ogura K, Kimoto Y, Ogino H (2019) Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris. World J Microbiol Biotechnol 35(2):37. https://doi.org/10.1007/s11274-019-2610-4

    Article  CAS  PubMed  Google Scholar 

  63. Kong X, Zhang B, Hua Y, Zhu Y, Li W, Wang D, Hong J (2019) Efficient L-lactic acid production from corncob residue using metabolically engineered thermo-tolerant yeast. Bioresour Technol 273:220–230. https://doi.org/10.1016/j.biortech.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  64. Gomes D, Rodrigues AC, Domingues L, Gama M (2015) Cellulase recycling in biorefineries is it possible? Appl Microbiol Biotechnol 99(10):4131–4143. https://doi.org/10.1007/s00253-015-6535-z

    Article  CAS  PubMed  Google Scholar 

  65. Mori T, Kako H, Sumiya T, Kawagishi H, Hirai H (2016) Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624. J Biotechnol 239:83–89. https://doi.org/10.1016/j.jbiotec.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  66. Yamada R, Kumata Y, Mitsui R, Matsumoto T, Ogino H (2021) Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae. World J Microbiol Biotechnol 37(2):1–10. https://doi.org/10.1007/s11274-020-02977-1

    Article  CAS  Google Scholar 

  67. Yamada R, Wakita K, Mitsui R, Ogino H (2017) Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnol Bioeng 114(9):2075–2084. https://doi.org/10.1002/bit.26330

    Article  CAS  PubMed  Google Scholar 

  68. Kim JW, Jang JH, Yeo HJ, Seol J, Kim SR, Jung YH (2019) Lactic acid production from a whole slurry of acid-pretreated spent coffee grounds by engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol 189(1):206–216. https://doi.org/10.1007/s12010-019-03000-6

    Article  CAS  PubMed  Google Scholar 

  69. Hábová V, Melzoch K, Rychtera M, Sekavová B (2004) Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth. Desalination 162:361–372. https://doi.org/10.1016/S0011-9164(04)00070-0

    Article  Google Scholar 

  70. Joglekar HG, Rahman I, Babu S, Kulkarni BD, Joshi A (2006) Comparative assessment of downstream processing options for lactic acid. Sep Purif Technol 52(1):1–17. https://doi.org/10.1016/j.seppur.2006.03.015

    Article  CAS  Google Scholar 

  71. Hulse GK, Stalenberg V, McCallum D, Smit W, O'neil G, Morris N, Tait RJ (2005) Histological changes over time around the site of sustained release naltrexone-poly (DL-lactide) implants in humans. J Control Release 108(1):43–55. https://doi.org/10.1016/j.jconrel.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  72. Lunelli BH, Andrade RR, Atala DI, Maciel MRW, Maugeri Filho F, Maciel Filho R (2010) Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling. Appl Biochem Biotechnol 161(1):227–237. https://doi.org/10.1007/s12010-009-8828-0

    Article  CAS  PubMed  Google Scholar 

  73. Komesu A, Wolf Maciel MR, Rocha de Oliveira JA, da Silva Martins LH, Maciel Filho R (2017) Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes. Sep Purif Rev 46(3):241–254. https://doi.org/10.1080/15422119.2016.1260034

    Article  CAS  Google Scholar 

  74. Krzyżaniak A, Leeman M, Vossebeld F, Visser TJ, Schuur B, de Haan AB (2013) Novel extractants for the recovery of fermentation derived lactic acid. Sep Purif Technol 111:82–89. https://doi.org/10.1016/j.seppur.2013.03.031

    Article  CAS  Google Scholar 

  75. Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of d-(−)-lactic acid from broken rice by lactobacillus delbrueckii using ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794. https://doi.org/10.1016/j.biortech.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  76. Idler C, Venus J, Kamm B (2015) Microorganisms for the production of lactic acid and organic lactates. Microorg Biorefineries 26:225–273. https://doi.org/10.1007/978-3-662-45209-7_9

    Article  Google Scholar 

  77. Bailly M (2002) Production of organic acids by bipolar electrodialysis: realizations and perspectives. Desalination 144(1–3):157–162. https://doi.org/10.1016/S0011-9164(02)00305-3

    Article  CAS  Google Scholar 

  78. Choi JH, Kim SH, Moon SH (2002) Recovery of lactic acid from sodium lactate by ion substitution using ion-exchange membrane. Sep Purif Technol 28(1):69–79. https://doi.org/10.1016/S1383-5866(02)00014-X

    Article  CAS  Google Scholar 

  79. Lee EG, Moon SH, Chang YK, Yoo IK, Chang HN (1998) Lactic acid recovery using two-stage electrodialysis and its modelling. J Membr Sci 145(1):53–66. https://doi.org/10.1016/S0376-7388(98)00065-9

    Article  CAS  Google Scholar 

  80. Kim YH, Moon SH (2001) Lactic acid recovery from fermentation broth using one-stage electrodialysis. J Chem Technol Biotechnol 76(2):169–178. https://doi.org/10.1002/jctb.368

    Article  CAS  Google Scholar 

  81. Martins PF, Medeiros HHR, Sbaite P, Maciel MW (2013) Enrichment of oxyterpenes from orange oil by short path evaporation. Sep Purif Technol 116:385–390. https://doi.org/10.1016/j.seppur.2013.06.011

    Article  CAS  Google Scholar 

  82. Komesu A, Martins PF, Lunelli BH, Oliveira J, Maciel Filho R, Maciel MRW (2014) Evaluation of lactic acid purification from fermentation broth by hybrid short path evaporation using factorial experimental design. Sep Purif Technol 136:233–240. https://doi.org/10.1016/j.seppur.2014.09.010

    Article  CAS  Google Scholar 

  83. Luongo V, Policastro G, Ghimire A, Pirozzi F, Fabbricino M (2019) Repeated-batch fermentation of cheese whey for semi-continuous lactic acid production using mixed cultures at uncontrolled pH. Sustainability 11(12):3330. https://doi.org/10.3390/su11123330

    Article  CAS  Google Scholar 

  84. Kamble SP, Barve PP, Joshi JB, Rahman I, Kulkarni BD (2012) Purification of lactic acid via esterification of lactic acid using a packed column, followed by hydrolysis of methyl lactate using three continuously stirred tank reactors (CSTRs) in series: a continuous pilot plant study. Ind Eng Chem Res 51(4):1506–1514. https://doi.org/10.1021/ie200642j

    Article  CAS  Google Scholar 

  85. Sanz MT, Murga R, Beltrán S, Cabezas JL, Coca J (2004) Kinetic study for the reactive system of lactic acid esterification with methanol: methyl lactate hydrolysis reaction. Ind Eng Chem Res 43(9):2049–2053. https://doi.org/10.1021/ie034031p

    Article  CAS  Google Scholar 

  86. U.S. Patent 6,384,276,2002 Process for the preparation of lactic acid by evaporative crystallisation

    Google Scholar 

  87. Filachione EM, Fisher CH (1946) Purification of lactic acid. Ind Eng Chem 38(2):228–232

    Article  CAS  Google Scholar 

  88. Arora MB, Hestekin JA, Snyder SW, St. Martin EJ, Lin YJ, Donnelly MI, Millard CS (2007) The separative bioreactor: a continuous separation process for the simultaneous production and direct capture of organic acids. Sep Sci Technol 42(11):2519–2538. https://doi.org/10.1080/01496390701477238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM (2003) L (+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem Eng Sci 58(3–6):785–791. https://doi.org/10.1016/S0009-2509(02)00608-5

    Article  CAS  Google Scholar 

  90. Marták J, Schlosser Š, Sabolová E, Krištofı́ková L, Rosenberg M (2003) Fermentation of lactic acid with Rhizopus arrhizus in a stirred tank reactor with a periodical bleed and feed operation. Process Biochem 38(11):1573–1583. https://doi.org/10.1016/S0032-9592(03)00059-1

    Article  CAS  Google Scholar 

  91. Park EY, Kosakai Y, Okabe M (1998) Efficient production of l-(+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactor. Biotechnol Prog 14(5):699–704. https://doi.org/10.1021/bp9800642

    Article  CAS  PubMed  Google Scholar 

  92. Thongchul N, Yang ST (2003) Controlling filamentous fungal morphology by immobilization on a rotating fibrous matrix to enhance oxygen transfer and L (+)-lactic acid production by Rhizopus oryzae. ACS Symp Ser 862(3):36–51. https://doi.org/10.1021/bk-2003-0862.ch003

    Article  CAS  Google Scholar 

  93. Du J, Cao N, Gong CS, Tsao GT (1998) Production of L-lactic acid by Rhizopus oryzae in a bubble column fermenter. Appl Biochem Biotechnol 70:323–329. https://doi.org/10.1007/BF02920148

    Article  PubMed  Google Scholar 

  94. Zhou Y, Domínguez JM, Cao N, Du J, & Tsao GT (1999) Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. In Twentieth symposium on biotechnology for fuels and chemicals (pp. 401–407). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1604-9_37

  95. Miura S, Arimura T, Hoshino M, Kojima M, Dwiarti L, Okabe M (2003) Optimization and scale-up of l-lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J Biosci Bioeng 96(1):65–69. https://doi.org/10.1016/S1389-1723(03)90098-3

    Article  CAS  PubMed  Google Scholar 

  96. Yin P, Nishina N, Kosakai Y, Yahiro K, Pakr Y, Okabe M (1997) Enhanced production of L (+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng 84(3):249–253. https://doi.org/10.1016/S0922-338X(97)82063-6

    Article  CAS  Google Scholar 

  97. Silva EM, Yang ST (1995) Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. J Biotechnol 41(1):59–70. https://doi.org/10.1016/0168-1656(95)00059-Y

    Article  CAS  Google Scholar 

  98. Eş I, Khaneghah AM, Barba FJ, Saraiva JA, Sant'Ana AS, Hashemi SMB (2018) Recent advancements in lactic acid production-a review. Food Res Int 107:763–770. https://doi.org/10.1016/j.foodres.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  99. Shi Z, Wei P, Zhu X, Cai J, Huang L, Xu Z (2012) Efficient production of l-lactic acid from hydrolysate of Jerusalem artichoke with immobilized cells of Lactococcus lactis in fibrous bed bioreactors. Enzym Microb Technol 51(5):263–268. https://doi.org/10.1016/j.enzmictec.2012.07.007

    Article  CAS  Google Scholar 

  100. Chotisubha-anandha N, Thitiprasert S, Tolieng V, Thongchul N (2011) Improved oxygen transfer and increased L-lactic acid production by morphology control of Rhizopus oryzae in a static bed bioreactor. Bioprocess Biosyst Eng 34(2):163–172. https://doi.org/10.1007/s00449-010-0457-z

    Article  CAS  PubMed  Google Scholar 

  101. Pimtong V, Ounaeb S, Thitiprasert S, Tolieng V, Sooksai S, Boonsombat R, Tanasupawat S, Assabumrungrat S, Thongchul N (2017) Enhanced effectiveness of Rhizopus oryzae by immobilization in a static bed fermentor for l-lactic acid production. Process Biochem 52:44–52. https://doi.org/10.1016/j.procbio.2016.09.020

    Article  CAS  Google Scholar 

  102. Kosseva MR, Panesar PS, Kaur G, Kennedy JF (2009) Use of immobilised biocatalysts in the processing of cheese whey. Int J Biol Macromol 45(5):437–447. https://doi.org/10.1016/j.ijbiomac.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  103. Faschian R, De S, Pörtner R (2016) Multi-fixed-bed bioreactor system applied for bioprocess development of immobilized lactic acid bacteria. Open Biotechnol J 10:1. https://doi.org/10.2174/1874070701610010001

    Article  CAS  Google Scholar 

  104. Fan R, Ebrahimi M, Czermak P (2017) Anaerobic membrane bioreactor for continuous lactic acid fermentation. Membranes 7(2):26. https://doi.org/10.3390/membranes7020026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Smith Jr, CV (1969) The use of ultrafiltration membrane for activated sludge separation. In Proc. 24th Annual Purdue Industrial Waste Conf. (pp. 1300-1310)

    Google Scholar 

  106. Carrère H, Blaszkow F, de Balmann HR (2001) Modelling the clarification of lactic acid fermentation broths by cross-flow microfiltration. J Membr Sci 186(2):219–230. https://doi.org/10.1016/S0376-7388(00)00677-3

    Article  Google Scholar 

  107. Cysewski GR, Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol Bioeng 19(8):1125–1143. https://doi.org/10.1002/bit.260190804

    Article  CAS  Google Scholar 

  108. Puziss M, Hedén CG (1965) Toxin production by clostridium tetani in biphasic liquid cultures. Biotechnol Bioeng 7(3):355–366. https://doi.org/10.1002/bit.260070305

    Article  CAS  Google Scholar 

  109. Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73(1):25–34. https://doi.org/10.1002/1097-0290(20010405)73:1%3C25::AID-BIT1033%3E3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  110. Kulozik U, Hammelehle B, Pfeifer J, Kessler HG (1992) High reaction rate continuous bioconversion process in a tubular reactor with narrow residence time distributions for the production of lactic acid. J Biotechnol 22(1–2):107–116. https://doi.org/10.1016/0168-1656(92)90135-V

    Article  CAS  Google Scholar 

  111. Jeantet R, Maubois JL, Boyaval P (1996) Semicontinuous production of lactic acid in a bioreactor coupled with nanofiltration membranes. Enzym Microb Technol 19(8):614–619. https://doi.org/10.1016/S0141-0229(96)00073-7

    Article  CAS  Google Scholar 

  112. Wenten IG, Khoiruddin K, Aryanti PT, Victoria AV, Tanukusuma G (2018) Membrane-based zero-sludge palm oil mill plant. Rev Chem Eng 36(2):237–263. https://doi.org/10.1515/revce-2017-0117

    Article  CAS  Google Scholar 

  113. Zhang Y, Chen X, Qi B, Luo J, Shen F, Su Y, Khan R, Wan Y (2014) Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresour Technol 163:160–166. https://doi.org/10.1016/j.biortech.2014.04.038

    Article  CAS  PubMed  Google Scholar 

  114. Moueddeb H, Sanchez J, Bardot C, Fick M (1996) Membrane bioreactor for lactic acid production. J Membr Sci 114(1):59–71. https://doi.org/10.1016/0376-7388(95)00307-X

    Article  CAS  Google Scholar 

  115. Tay A, Yang ST (2002) Production of L (+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80(1):1–12. https://doi.org/10.1002/bit.10340

    Article  CAS  PubMed  Google Scholar 

  116. Liu T, Miura S, Yaguchi M, Arimura T, Park EY, Okabe M (2006) Scale-up of L-lactic acid production by mutant strain Rhizopus sp. Mk-96-1196 from 0.003 m3 to 5 m3 in airlift bioreactors. J Biosci Bioeng 101(1):9–12. https://doi.org/10.1263/jbb.101.9

    Article  CAS  PubMed  Google Scholar 

  117. Abubakar A, Suberu HA, Bello IM, Abdulkadir R, Daudu OA, Lateef AA (2013) Effect of pH on mycelial growth and sporulation of Aspergillus parasiticus. J Plant Sci 1(4):64–67. https://doi.org/10.11648/j.jps.20130104.13

    Article  Google Scholar 

  118. Niaz M, Iftikhar T, Qureshi FF, Niaz M (2014) Extracellular lipase production by Aspergillus nidulans (MBL-S-6) under submerged fermentation. Int J Agric Biol 16(3):536–542

    CAS  Google Scholar 

  119. Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 73(3):M127–M134. https://doi.org/10.1111/j.1750-3841.2008.00681.x

    Article  CAS  PubMed  Google Scholar 

  120. Shahri SZ, Vahabzadeh F, Mogharei A (2020) Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate. Bioprocess Biosyst Eng 43(2):333–345. https://doi.org/10.1007/s00449-019-02231-5

    Article  CAS  PubMed  Google Scholar 

  121. Teke GM, Pott RW (2020) Design and evaluation of a continuous semipartition bioreactor for in situ liquid-liquid extractive fermentation. Biotechnol Bioeng 118(1):58–71. https://doi.org/10.1002/bit.27550

    Article  CAS  PubMed  Google Scholar 

  122. Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). RSC Adv 3(33):13558–13568. https://doi.org/10.1039/C3RA41592A

    Article  CAS  Google Scholar 

  123. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  124. Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482. https://doi.org/10.1016/j.progpolymsci.2007.01.005

    Article  CAS  Google Scholar 

  125. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x

    Article  CAS  PubMed  Google Scholar 

  126. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84. https://doi.org/10.1023/A:1020200822435

    Article  CAS  Google Scholar 

  127. Ghosh K, Jones BH (2021) Roadmap to biodegradable plastics—current state and research needs. ACS Sustain Chem Eng 9(18):6170–6187. https://doi.org/10.1021/acssuschemeng.1c00801

    Article  CAS  Google Scholar 

  128. Emergen Research. Polylactic Acid Market By Product Type (Racemic PLLA (Poly-L-lactic Acid), Regular PLLA (Poly-L-lactic Acid), PDLA (Poly-D-lactic Acid), PDLLA (Poly-DL-lactic Acid)), Distribution Channel, BY Application (Packaging, Textile, Transport, Agriculture, Electronics, Medical), Forecasts to 2027. 2020, September [cited 2021; https://www.emergenresearch.com/industry-report/polylactic-acid-market

  129. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly (lactic acid): a review. J Macromol Sci Polym Rev 45(4):325–349. https://doi.org/10.1080/15321790500304148

    Article  CAS  Google Scholar 

  130. Ahmed J, Varshney SK (2011) Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop 14(1):37–58. https://doi.org/10.1080/10942910903125284

    Article  CAS  Google Scholar 

  131. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328. https://doi.org/10.1016/j.biotechadv.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  132. Van Hilst F, Hoefnagels R, Junginger M, Shen L, Wicke B (2017) Sustainable biomass for energy and materials: a greenhouse gas emission perspective. Copernicus Institute of Sustainable Development Working Paper, Utrecht

    Google Scholar 

  133. Masutani K, & Kimura Y (2014) PLA synthesis. From the monomer to the polymer https://doi.org/10.1039/9781782624806-00001

  134. Ehsani M, Khodabakhshi K, Asgari M (2014) Lactide synthesis optimization: investigation of the temperature, catalyst and pressure effects. E-Polymers 14(5):353–361. https://doi.org/10.1515/epoly-2014-0055

    Article  CAS  Google Scholar 

  135. Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of L-lactic acid: an alternative route to poly (L-lactic acid) with high molecular weight. Polymer 42(11):5059–5062. https://doi.org/10.1016/S0032-3861(00)00889-2

    Article  CAS  Google Scholar 

  136. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025. https://doi.org/10.1002/app.21779

    Article  CAS  Google Scholar 

  137. Nagahata R, Sano D, Suzuki H, Takeuchi K (2007) Microwave-assisted single-step synthesis of poly (lactic acid) by direct polycondensation of lactic acid. Macromol Rapid Commun 28(4):437–442. https://doi.org/10.1002/marc.200600715

    Article  CAS  Google Scholar 

  138. Cao HL, Wang P, Yuan WB (2009) Microwave-assisted synthesis of poly (L-lactic acid) via direct melt polycondensation using solid super-acids. Macromol Chem Phys 210(23):2058–2062. https://doi.org/10.1002/macp.200900231

    Article  CAS  Google Scholar 

  139. Zahari SSNS, Mansor MH, Azman HH, Rosli D (2020) Uncatalysed Polycondensation of Lactic Acid to Polylactic Acid under Microwave Irradiation: Effect of Microwave Power. J Phys: Conference Series 1551(1):012001). IOP Publishing. https://doi.org/10.1088/1742-6596/1551/1/012001

    Article  CAS  Google Scholar 

  140. Li G, Zhao M, Xu F, Yang B, Li X, Meng X, Teng L, Sun F, Li Y (2020) Synthesis and biological application of polylactic acid. Molecules 25(21):5023. https://doi.org/10.3390/molecules25215023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim KW, Woo SI (2002) Synthesis of high-molecular-weight poly (L-lactic acid) by direct polycondensation. Macromol Chem Phys 203(15):2245–2250. https://doi.org/10.1002/1521-3935(200211)203:15<2245::AID-MACP2245>3.0.co;2-3

    Article  CAS  Google Scholar 

  142. Hadiantoro S, Widjajanti K, Putri DIK, & Nikmah L (2021) Poly lactic acid (pla) development using lactic acid product from rice straw fermentation with azeotropic polycondensation process. In IOP Conference Series: Materials Science and Engineering (Vol. 1053, No. 1, p. 012043). IOP Publishing. https://doi.org/10.1088/1757-899x/1053/1/012043

  143. Avérous L (2008) Polylactic acid: synthesis, properties and applications. In Monomers, polymers and composites from renewable resources (pp. 433–450). Elsevier. https://doi.org/10.1016/b978-0-08-045316-3.00021-1

  144. Kricheldorf HR, Dunsing R (1986) Polylactones, 8. Mechanism of the cationic polymerization of L, L-dilactide. Die Makromolekulare Chemie. Macromol Chem Phys 187(7):1611–1625. https://doi.org/10.1002/macp.1986.021870706

    Article  CAS  Google Scholar 

  145. Baśko M, Kubisa P (2010) Cationic polymerization of l, l-lactide. J Polym Sci A Polym Chem 48(12):2650–2658. https://doi.org/10.1002/pola.24048

    Article  CAS  Google Scholar 

  146. Penczek S (1980) Cationic ring-opening polymerization of heterocyclic monomers. I Mechanisms https://doi.org/10.1007/bfb0023043

  147. Sutar AK, Maharana T, Dutta S, Chen CT, Lin CC (2010) Ring-opening polymerization by lithium catalysts: an overview. Chem Soc Rev 39(5):1724–1746. https://doi.org/10.1039/b912806a

    Article  CAS  PubMed  Google Scholar 

  148. Uyama H, & Kobayashi S (2019) Synthesis of polyesters II: hydrolase as catalyst for ring-opening polymerization. Enzymatic polymerization towards green polymer chemistry: green chemistry and sustainable technology; Kobayashi, S., Uyama, H., Kadokawa, J., eds, 165-197. https://doi.org/10.1007/978-981-13-3813-7_6

  149. Zhao H, Nathaniel GA, Merenini PC (2017) Enzymatic ring-opening polymerization (ROP) of lactides and lactone in ionic liquids and organic solvents: digging the controlling factors. RSC Adv 7(77):48639–48648. https://doi.org/10.1039/c7ra09038b

    Article  CAS  Google Scholar 

  150. Whulanza Y, Rahman SF, Suyono EA, Yohda M, Gozan M (2018) Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatal Agric Biotechnol 16:683–691. https://doi.org/10.1016/j.bcab.2018.09.015

    Article  Google Scholar 

  151. Bukhari A, Atta M, Idris A (2017) Synthesis of poly (L-) lactide under simultaneous cooling and microwave heating by using immobilised Candida Antarctica lipase B. Chem Eng Trans 56:1447–1452. https://doi.org/10.3303/CET1756242

    Article  Google Scholar 

  152. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  153. Eerikäinen T, Linko P, Linko S, Siimes T, Zhu YH (1993) Fuzzy logic and neural network applications in food science and technology. Trends Food Sci Technol 4(8):237–242. https://doi.org/10.1016/0924-2244(93)90137-Y

    Article  Google Scholar 

  154. Mohammadi V, & Minaei S (2019) Artificial intelligence in the production process. In Engineering tools in the beverage industry (pp. 27–63). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815258-4.00002-0

  155. Singh A, Majumder A, Goyal A (2008) Artificial intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146. Bioresour Technol 99(17):8201–8206. https://doi.org/10.1016/j.biortech.2008.03.038

    Article  CAS  PubMed  Google Scholar 

  156. Ng A (2000) CS229 Lecture notes CS229 Lecture notes, 1(1), 1–3. https://backspaces.net/temp/ML/CS229.pdf

  157. Karray F, Karray FO, De Silva CW (2004) Soft computing and intelligent systems design: theory, tools, and applications. Pearson Education

    Google Scholar 

  158. Chaturvedi DK (2008) Artificial neural network and supervised learning. Soft Computing: Techniques and its Applications in Electrical Engineering, 23-50. https://doi.org/10.1007/978-3-540-77481-5_3

  159. Panagou EZ, Kodogiannis V, Nychas GE (2007) Modelling fungal growth using radial basis function neural networks: the case of the ascomycetous fungus Monascus ruber van Tieghem. Int J Food Microbiol 117(3):276–286. https://doi.org/10.1016/j.ijfoodmicro.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  160. Ahmad A, Banat F, Taher H (2021) Comparative study of lactic acid production from date pulp waste by batch and cyclic–mode dark fermentation. Waste Manag 120:585–593. https://doi.org/10.1016/j.wasman.2020.10.029

    Article  CAS  PubMed  Google Scholar 

  161. Lunelli BH, Melo DN, de Morais ER, Victorino IR, de Toledo ECV, Maciel MRW, & Maciel Filho R (2011) Real-time optimization for lactic acid production from sucrose fermentation by Lactobacillus plantarum. In Computer aided chemical engineering (vol. 29, pp. 1396-1400). Elsevier. https://doi.org/10.1016/B978-0-444-54298-4.50058-1

  162. Carroll DL (1996) Chemical laser modeling with genetic algorithms. AIAA J 34(2):338–346. https://doi.org/10.2514/3.13069

    Article  CAS  Google Scholar 

  163. Dulf EH, Vodnar DC, Dulf FV (2018) Modeling tool using neural networks for l (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Chem Cent J 12(1):1–9. https://doi.org/10.1186/s13065-018-0491-5

    Article  CAS  Google Scholar 

  164. Saleh B, Maher I, Abdelrhman Y, Heshmat M, Abdelaal O (2021) Adaptive neuro-fuzzy inference system for modelling the effect of slurry impacts on PLA material processed by FDM. Polymers 13(1):118. https://doi.org/10.3390/polym13010118

    Article  CAS  Google Scholar 

  165. Jakkula V (2006) Tutorial on support vector machine (svm). School of EECS, Washington State University, 37. https://course.ccs.neu.edu/cs5100f11/resources/jakkula.pdf

  166. Segler MH, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698):604–610. https://doi.org/10.1038/nature25978

    Article  CAS  PubMed  Google Scholar 

  167. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626. https://doi.org/10.1111/jam.14290

    Article  CAS  PubMed  Google Scholar 

  168. Yanoso-Scholl L, Jacobson JA, Bradica G, Lerner AL, O'Keefe RJ, Schwarz EM, Zuscik MJ, Awad HA (2010) Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering. J Biomed Mater Res A 95(3):717–726. https://doi.org/10.1002/jbm.a.32868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Haaparanta AM, Järvinen E, Cengiz IF, Ellä V, Kokkonen HT, Kiviranta I, Kellomäki M (2014) Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med 25(4):1129–1136. https://doi.org/10.1007/s10856-013-5129-5

    Article  CAS  PubMed  Google Scholar 

  170. Gupta S, Sharma A, Kumar JV, Sharma V, Gupta PK, Verma RS (2020) Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. Int J Biol Macromol 162:1358–1371. https://doi.org/10.1016/j.ijbiomac.2020.07.238

    Article  CAS  PubMed  Google Scholar 

  171. Mohandesnezhad S, Pilehvar-Soltanahmadi Y, Alizadeh E, Goodarzi A, Davaran S, Khatamian M, Zarghami N, Samiei M, Aghazadeh M, Akbarzadeh A (2020) In vitro evaluation of Zeolite-nHA blended PCL/PLA nanofibers for dental tissue engineering. Mater Chem Phys 252:123152. https://doi.org/10.1016/j.matchemphys.2020.123152

    Article  CAS  Google Scholar 

  172. Dong Y, Feng SS (2006) Nanoparticles of poly (D, L-lactide)/methoxy poly (ethylene glycol)-poly (D, L-lactide) blends for controlled release of paclitaxel. J Biomed Mater Res Part A 78(1):12–19. https://doi.org/10.1002/jbm.a.30684

    Article  CAS  Google Scholar 

  173. Siafaka PI, Barmbalexis P, Bikiaris DN (2016) Novel electrospun nanofibrous matrices prepared from poly (lactic acid)/poly (butylene adipate) blends for controlled release formulations of an anti-rheumatoid agent. Eur J Pharm Sci 88:12–25. https://doi.org/10.1016/j.ejps.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  174. Yu Y, Chen CK, Law WC, Weinheimer E, Sengupta S, Prasad PN, Cheng C (2014) Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery. Biomacromolecules 15(2):524–532. https://doi.org/10.1021/bm401471p

    Article  CAS  PubMed  Google Scholar 

  175. Mhlanga N, Sinha Ray S, Lemmer Y, Wesley-Smith J (2015) Polylactide-based magnetic spheres as efficient carriers for anticancer drug delivery. ACS Appl Mater Interfaces 7(40):22692–22701. https://doi.org/10.1021/acsami.5b07567

    Article  CAS  PubMed  Google Scholar 

  176. Li W, Fan X, Wang X, Shang X, Wang Q, Lin J, Hu Z, Li Z (2018) Stereocomplexed micelle formation through enantiomeric PLA-based Y-shaped copolymer for targeted drug delivery. Mater Sci Eng C 91:688–695. https://doi.org/10.1016/j.msec.2018.06.006

    Article  CAS  Google Scholar 

  177. Chen J, Tian B, Yin X, Zhang Y, Hu D, Hu Z, Liu M, Pan Y, Zhao J, Li H, Hou C, Wang J, Zhang Y (2007) Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. J Biotechnol 130(2):107–113. https://doi.org/10.1016/j.jbiotec.2007.02.007

    Article  CAS  PubMed  Google Scholar 

  178. Camović M, Biščević A, Brčić I, Borčak K, Bušatlić S, Ćenanović N, Dedović A, Mulalić A, Osmanlić M, Sirbubalo M, Tucak A, & Vranić E (2019) Coated 3d printed PLA microneedles as transdermal drug delivery systems. In International conference on medical and biological engineering (pp. 735–742). Springer, Cham. https://doi.org/10.1007/978-3-030-17971-7_109

  179. Vaňková E, Kašparová P, Khun J, Machková A, Julák J, Sláma M, Hodek J, Ulrychová L, Weber J, Obrová K, Kosulin K, Lion T, Scholtz V (2020) Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic. PeerJ 8:e10259. https://doi.org/10.7717/peerj.10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Buluş E, Buluş GS, Yakuphanoglu F (2020) Production of polylactic acid-activated charcoal nanofiber membranes for COVID-19 pandemic by electrospinning technique and determination of filtration efficiency. J Mater Electronic Devices 4(1):21–26

    Google Scholar 

  181. Alghounaim M, Almazeedi S, Al Youha S, Papenburg J, Alowaish O, AbdulHussain G, Rawan Al-Shemali R, Albuloushi A, Alzabin S, Al-Wogayan K, Al-Mutawa Y, Al-Sabah S (2020) Low-cost polyester-tipped three-dimensionally printed nasopharyngeal swab for the detection of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). J Clin Microbiol 58(11):e01668–20. https://doi.org/10.1128/jcm.01668-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Holm VK, Mortensen G, Vishart M, Petersen MA (2006) Impact of poly-lactic acid packaging material on semi-hard cheese. Int Dairy J 16(8):931–939. https://doi.org/10.1016/j.idairyj.2005.09.001

    Article  CAS  Google Scholar 

  183. Lukic I, Vulic J, Ivanovic J (2020) Antioxidant activity of PLA/PCL films loaded with thymol and/or carvacrol using scCO2 for active food packaging. Food Packag Shelf Life 26:100578. https://doi.org/10.1016/j.fpsl.2020.100578

    Article  Google Scholar 

  184. Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9(23):20132–20141. https://doi.org/10.1021/acsami.7b05557

    Article  CAS  PubMed  Google Scholar 

  185. Knoch S, Pelletier F, Larose M, Chouinard G, Dumont MJ, Tavares JR (2020) Surface modification of PLA nets intended for agricultural applications. Colloids Surf A Physicochem Eng Asp 598:124787. https://doi.org/10.1016/j.colsurfa.2020.124787

    Article  CAS  Google Scholar 

  186. Khan H, Kaur S, Baldwin TC, Radecka I, Jiang G, Bretz I, Duale K, Adamus G, & Kowalczuk M (2020) Effective control against broadleaf weed species provided by biodegradable PBAT/PLA mulch film embedded with the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA). https://doi.org/10.1021/acssuschemeng.0c00991

  187. Souza PMS, Sommaggio LRD, Marin-Morales MA, Morales AR (2020) PBAT biodegradable mulch films: study of ecotoxicological impacts using Allium cepa, Lactuca sativa and HepG2/C3A cell culture. Chemosphere 256:126985. https://doi.org/10.1016/j.chemosphere.2020.126985

    Article  CAS  PubMed  Google Scholar 

  188. Jabbar A, Tausif M, Tahir HR, Basit A, Bhatti MRA, Abbas G (2019) Polylactic acid/lyocell fibre as an eco-friendly alternative to polyethylene terephthalate/cotton fibre blended yarns and knitted fabrics. J Text Inst 111(1):129–138. https://doi.org/10.1080/00405000.2019.1624070

    Article  CAS  Google Scholar 

  189. Huang XX, Tao XM, Zhang ZH, Chen P (2016) Properties and performances of fabrics made from bio-based and degradable polylactide acid/poly (hydroxybutyrate-co-hydroxyvalerate)(PLA/PHBV) filament yarns. Text Res J 87(20):2464–2474. https://doi.org/10.1177/0040517516671128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M. et al. (2023). Lactic Acid Production from Fungal Machineries and Mechanism of PLA Synthesis: Application of AI-Based Technology for Improved Productivity. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_8

Download citation

Publish with us

Policies and ethics