Skip to main content

A Bird’s-Eye View of Fungal Peptides

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology
  • 642 Accesses

Abstract

Peptide-based drugs/antibiotics are increasingly becoming preferable due to greater incidence of multidrug resistance towards non-peptidic drugs. In addition, several non-peptidic compounds also elicit unfavorable or toxic side effects. Consequently, besides bacteria, plants and animal-based sources, fungi have also been explored very much in the search for novel therapeutic peptides that can be more efficacious and safer. Based on the biosynthetic pathways, these peptides can be classified as (i) ribosomal peptides and (ii) non-ribosomal peptides (NRPs). Several NRPs from diverse fungal sources (soil, marine, and endophytes) have been identified and comprehensively characterized, whereas studies on ribosomal peptides of fungal origin are limited. In terms of molecular architecture, fungal peptides can be classified into four major categories: (i) linear peptides with modified N- and C-termini (e.g., peptaibiotics and peptaibols); (ii) head-to-tail (backbone) cyclized peptides; (iii) cyclic depsipeptides; and (iv) sidechain cyclized peptides. In this chapter, salient features of some major fungal peptides that have been found to elicit various kinds of biological activities are presented. A few aspects on some fungal peptide-based products of pharmaceutical or medical relevance, e.g., caspofungin (brand name: Cancidas) and cyclosporin A, which are already available in the market, are also briefly delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niu X, Thaochan N, Hu Q (2020) Diversity of linear non-ribosomal peptide in biocontrol fungi. J Fungi (Basel) 6(2):61. https://doi.org/10.3390/jof6020061

    Article  CAS  PubMed  Google Scholar 

  2. Andes D, Craig W et al (2009) In vivo pharmacodynamic characterization of a novel plectasin antibiotic, NZ2114, in a murine infection model. Antimicrob Agents Chemother 53(7):3003–3009. https://doi.org/10.1128/AAC.01584-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arnison PG, Bibb MJ et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. https://doi.org/10.1039/c2np20085f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dang T, Süssmuth RD (2017) Bioactive peptide natural products as lead structures for medicinal use. Acc Chem Res 50(7):1566–1576. https://doi.org/10.1021/acs.accounts.7b00159

    Article  CAS  PubMed  Google Scholar 

  5. Vogt E, Künzler M (2019) Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics. Appl Microbiol Biotechnol 103(14):5567–5581. https://doi.org/10.1007/s00253-019-09893-x

    Article  CAS  PubMed  Google Scholar 

  6. Kleinkauf H, Von Döhren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236:335–351. https://doi.org/10.1111/j.1432-1033.1996.00335.x

    Article  CAS  PubMed  Google Scholar 

  7. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2673. https://doi.org/10.1021/cr960029e

    Article  CAS  PubMed  Google Scholar 

  8. Alonzo DA, Schmeing TM (2020) Biosynthesis of depsipeptides, or Depsi: the peptides with varied generations. Protein Sci 29(12):2316–2347. https://doi.org/10.1002/pro.3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Lin M et al (2017) Structural diversity and biological activities of fungal cyclic peptides, excluding cyclodipeptides. Molecules 22(12):2069. https://doi.org/10.3390/molecules22122069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Youssef FS, Ashour ML et al (2019) A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar Drugs 17(10):559. https://doi.org/10.3390/md17100559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brückner H, Przybylski M (1984) Isolation and structural characterization of polypeptide-antibiotics of the peptaibol class by high-performance liquid chromatography with field desorption and fast atom bombardment mass spectrometry. J Chromatogr 296:263–275

    Article  Google Scholar 

  12. Pandey RC, Cook JC Jr, Rinehart KL Jr (1977) High resolution and field desorption mass spectrometry studies and revised structures of alamethicins I and II. J Am Chem Soc 99:8469–8483. https://doi.org/10.1021/ja00468a016

    Article  CAS  Google Scholar 

  13. Pandey RC, Cook JC Jr, Rinehart KL Jr (1977) Reptaibophol antibiotics. 2. Structures of the peptide antibiotics emerimicins III and IV. J Am Chem Soc 99:5205–5206. https://doi.org/10.1021/ja00457a064

    Article  CAS  PubMed  Google Scholar 

  14. Pandey RC, Meng H et al (1977) Structure of antiamoebin I from high resolution field desorption and gas chromatographic mass spectrometry studies. J Am Chem Soc 99:5203–5205. https://doi.org/10.1021/ja00457a063

    Article  CAS  PubMed  Google Scholar 

  15. Ruiz N, Wielgosz-Collin G et al (2007) New Trichobrachins, 11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides 28:1351–1358. https://doi.org/10.1016/j.peptides.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  16. Singh VP, Pathania AS et al (2020) 14-residue peptaibol velutibol A from Trichoderma velutinum: its structural and cytotoxic evaluation. RSC Adv 10:31233–31242. https://doi.org/10.1039/d0ra05780k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh VP, Yedukondalu N et al (2018) Lipovelutibols A–D: cytotoxic lipopeptaibols from the Himalayan cold habitat fungus Trichoderma velutinum. J Nat Prod 81:219–226. https://doi.org/10.1021/acs.jnatprod.6b00873

    Article  CAS  PubMed  Google Scholar 

  18. Jaworski A, Brückner H (1999) Detection of new sequences of peptaibol antibiotics trichotoxins A-40 by on-line liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A 862:179–189. https://doi.org/10.1016/S0021-9673(99)00931-0

    Article  CAS  PubMed  Google Scholar 

  19. Poirier L, Amiard JC et al (2007) Determination of peptaibol trace amounts in marine sediments by liquid chromatography/electrospray ionization-ion trap-mass spectrometry. J Chromatogr A 1160:106–113. https://doi.org/10.1016/j.chroma.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  20. Sabareesh V, Ranganayaki RS et al (2007) Identification and characterization of a library of microheterogenous cyclohexadepsipeptides from the fungus Isaria. J Nat Prod 70(5):715–729

    Article  CAS  PubMed  Google Scholar 

  21. Stoppacher N, Reithner B et al (2007) Profiling of trichorzianines in culture samples of Trichoderma atroviride by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21:3963–3970

    Article  CAS  PubMed  Google Scholar 

  22. Van Bohemen AI, Zalouk-Vergnoux A et al (2016) Development and validation of LC-MS methods for peptaibol quantification in fungal extracts according to their lengths. J Chromatogr B Analyt Technol Biomed Life Sci 1009-1010:25–33. https://doi.org/10.1016/j.jchromb.2015.11.039

    Article  CAS  PubMed  Google Scholar 

  23. Toniolo C, Bruckner H (2007) Peptaibiotics. Chem Biodivers 4:1021–1022. https://doi.org/10.1002/cbdv.200790093

    Article  CAS  Google Scholar 

  24. Krause C, Kirschbaum J, Brückner H (2006) Peptaibiomics: an advanced, rapid and selective analysis of peptaibiotics/peptaibols by SPE/LC-ES-MS. Amino Acids 30:435–443. https://doi.org/10.1007/s00726-005-0275-9

    Article  CAS  PubMed  Google Scholar 

  25. Daniel JF, Filho ER (2007) Peptaibols of trichoderma. Nat Prod Rep 24(5):1128–1141. https://doi.org/10.1039/b618086h

    Article  CAS  PubMed  Google Scholar 

  26. Degenkolb T, Berg A et al (2003) The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J Pept Sci 9:666–678. https://doi.org/10.1002/psc.497

    Article  CAS  PubMed  Google Scholar 

  27. Raap J, Erkelens K et al (2005) Fungal biosynthesis of non-ribosomal peptide antibiotics and α, α-dialkylated amino acid constituents. J Pept Sci 11:331–338. https://doi.org/10.1002/psc.621

    Article  CAS  PubMed  Google Scholar 

  28. Du L, Risinger AL et al (2017) Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides. Proc Natl Acad Sci U S A 114:E8957–E8966. https://doi.org/10.1073/PNAS.1707565114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hao X, Li S et al (2021) Acremopeptaibols A-F, 16-residue peptaibols from the sponge-derived Acremonium sp. IMB18-086 cultivated with heat-killed Pseudomonas aeruginosa. J Nat Prod 84(11):2990–3000. https://doi.org/10.1021/acs.jnatprod.1c00834

    Article  CAS  PubMed  Google Scholar 

  30. Jiao WH, Khalil Z et al (2018) Trichodermides A-E: new peptaibols isolated from the Australian termite nest-derived fungus Trichoderma virens CMB-TN16. J Nat Prod 81(4):976–984. https://doi.org/10.1021/acs.jnatprod.7b01072

    Article  CAS  PubMed  Google Scholar 

  31. Stoppacher N, Neumann NKN et al (2013) The comprehensive peptaibiotics database. Chem Biodivers 10:734–743. https://doi.org/10.1002/cbdv.201200427

    Article  CAS  PubMed  Google Scholar 

  32. Zhang SH, Yang J et al (2021) Longibramides A-E, peptaibols isolated from a mushroom derived fungus Trichoderma longibrachiatum Rifai DMG-3-1-1. Chem Biodivers 18(5):e2100128. https://doi.org/10.1002/cbdv.202100128

    Article  CAS  PubMed  Google Scholar 

  33. Mohamed-Benkada M, Montagu M et al (2006) New short peptaibols from a marine Trichoderma strain. Rapid Commun Mass Spectrom 20:1176–1180. https://doi.org/10.1002/rcm.2430

    Article  CAS  PubMed  Google Scholar 

  34. Mohamed-Benkada M, François Pouchus Y et al (2016) Identification and biological activities of long-chain peptaibols produced by a marine-derived strain of Trichoderma longibrachiatum. Chem Biodivers 13(5):521–530. https://doi.org/10.1002/cbdv.201500159

    Article  CAS  PubMed  Google Scholar 

  35. van Bohemen AI, Ruiz N et al (2021) Pentadecaibins I-V: 15-residue peptaibols produced by a marine-derived Trichoderma sp. of the Harzianum clade. J Nat Prod 84(4):1271–1282. https://doi.org/10.1021/acs.jnatprod.0c01355

    Article  CAS  PubMed  Google Scholar 

  36. Balaram P, Krishna K et al (1992) The properties of ion channels formed by zervamicins. Eur Biophys J 21:117–128. https://doi.org/10.1007/BF00185426

    Article  CAS  PubMed  Google Scholar 

  37. Nagaraj R, Balaram P (1981) Alamethicin, a Transmembrane Channel. Acc Chem Res 14:356–362. https://doi.org/10.1021/ar00071a005

    Article  CAS  Google Scholar 

  38. Sansom MSP (1993) Structure and function of channel-forming peptaibols. Q Rev Biophys 26:365–421

    Article  CAS  PubMed  Google Scholar 

  39. Mueller P, Rudin DO (1968) Action potentials induced in biomolecular lipid membranes. Nature 217:713–719. https://doi.org/10.1038/217713a0

    Article  CAS  PubMed  Google Scholar 

  40. Fox RO, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 300:325–330. https://doi.org/10.1038/300325a0

    Article  CAS  PubMed  Google Scholar 

  41. Auvin-Guette C, Rebuffat S et al (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174. https://doi.org/10.1021/ja00032a035

    Article  CAS  Google Scholar 

  42. Gurunath R, Balaram P (1995) A nonhelical, multiple beta-turn conformation in a glycine-rich heptapeptide fragment of Trichogin A IV containing a single central alpha-aminoisobutyric acid residue. Biopolymers 35:21–29. https://doi.org/10.1002/bip.360350104

    Article  CAS  PubMed  Google Scholar 

  43. Iqbal M, Balaram P (1981) Membrane channel forming polypeptides. 270-MHz Hydrogen-1 nuclear magnetic resonance studies on the conformation of the 11–21 fragment of suzukacillin. Biochemistry 20:4866–4871. https://doi.org/10.1021/bi00520a010

    Article  CAS  PubMed  Google Scholar 

  44. Iqbal M, Balaram P (1981) The 310 helical conformation of the amino terminal decapeptide of suzukacillin. 270MHz 1H NMR evidence for eight intramolecular hydrogen bonds. J Am Chem Soc 103:5548–5552. https://doi.org/10.1021/ja00408a045

    Article  CAS  Google Scholar 

  45. Karle IL, Flippen-Anderson J et al (1987) Conformation of a 16-residue zervamicin IIA analog peptide containing three different structural features: 3(10)-helix, alpha-helix, and beta-bend ribbon. Proc Natl Acad Sci U S A 84:5087–5091. https://doi.org/10.1073/pnas.84.15.5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karle IL, Flippen-Anderson JL et al (1991) Crystal structure of [Leu1] zervamicin, a membrane ion-channel peptide: implications for gating mechanisms. Proc Natl Acad Sci U S A 88:5307–5311. https://doi.org/10.1073/pnas.88.12.5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Karle IL, Perozzo MA et al (1998) Crystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment. Proc Natl Acad Sci U S A 95:5501–5504. https://doi.org/10.1073/pnas.95.10.5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karle IL, Sukumar M, Balaram P (1986) Parallel packing of alpha-helices in crystals of the zervamicin IIA analog Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe.2H2O. Proc Natl Acad Sci U S A 83:9284–9288. https://doi.org/10.1073/pnas.83.24.9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rebuffat S, Prigent Y et al (1991) Tricholongins BI and BII, 19-residue peptaibols from Trichoderma longibrachiatum. Solution structure from two-dimensional NMR spectroscopy. Eur J Biochem 201:661–674

    Article  CAS  PubMed  Google Scholar 

  50. Snook CF, Woolley GA et al (1998) The structure and function of antiamoebin I, a proline-rich membrane-active polypeptide. Structure 6:783–792. https://doi.org/10.1016/S0969-2126(98)00079-3

    Article  CAS  PubMed  Google Scholar 

  51. Aravinda S, Shamala N, Balaram P (2008) Aib residues in peptaibiotics and synthetic sequences: analysis of nonhelical conformations. Chem Biodivers 5(7):1238–1262. https://doi.org/10.1002/cbdv.200890112

    Article  CAS  PubMed  Google Scholar 

  52. Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29(4):565–570. https://doi.org/10.1042/bst0290565

    Article  CAS  PubMed  Google Scholar 

  53. Whitmore L, Wallace BA (2004) Analysis of peptaibol sequence composition: implications for in vivo synthesis and channel formation. Eur Biophys J 33(3):233–237. https://doi.org/10.1007/s00249-003-0348-1

    Article  CAS  PubMed  Google Scholar 

  54. Auvin-Guette C, Rebuffat S et al (1993) Structural elucidation of Trikoningins KA and KB, peptaibols from Trichoderma koningii. J Chem Soc Perkin Trans 1:249–255

    Article  Google Scholar 

  55. Rowley DC, Kelly S et al (2003) Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg Med Chem 11:4263–4274. https://doi.org/10.1016/S0968-0896(03)00395-X

    Article  CAS  PubMed  Google Scholar 

  56. Momose I, Onodera T et al (2019) Leucinostatin Y: a peptaibiotic produced by the entomoparasitic fungus Purpureocillium lilacinum 40-H-28. J Nat Prod 82:1120–1127. https://doi.org/10.1021/acs.jnatprod.8b00839

    Article  CAS  PubMed  Google Scholar 

  57. Gupta S, Krasnoff SB et al (1991) Structures of the efrapeptins: potent inhibitors of mitochondrial ATPase from the fungus Tolypocladium niveum. J Am Chem Soc 113:707–709. https://doi.org/10.1021/ja00002a068

    Article  CAS  Google Scholar 

  58. Gupta S, Krasnoff SB et al (1992) Structure of efrapeptins from the fungus Tolypocladium niveum: peptide inhibitors of mitochondrial ATPase. J Org Chem 57:2306–2313. https://doi.org/10.1021/jo00034a022

    Article  CAS  Google Scholar 

  59. Uma MV, Sudha R, Balaram P (2001) Spermidine as a potential biosynthetic precursor to the 1,5-diazabicyclo[4:3:0]nonene residue in the efrapeptins. J Pept Res 58:375–379. https://doi.org/10.1034/j.1399-3011.2001.00915.x

    Article  CAS  PubMed  Google Scholar 

  60. Przybylski M, Dietrich I et al (1984) Elucidation of structure and microheterogeneity of the polypeptide antibiotics paracelsin and trichotoxin A-50 by fast atom bombardment mass spectrometry in combination with selective in situ hydrolysis. Biomed Mass Spectrom 11:569–582

    Article  CAS  Google Scholar 

  61. Rinehart KL Jr, Gaudioso LA et al (1981) Structures of eleven zervamicin and two emerimicin peptide antibiotics studied by fast atom bombardment mass spectrometry. J Am Chem Soc 103:6517–6520

    Article  CAS  Google Scholar 

  62. Pócsfalvi G, Ritieni A et al (1997) Microheterogeneity characterization of a Paracelsin mixture from Trichoderma reesei using high-energy collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom 11:922–930

    Article  PubMed  Google Scholar 

  63. Sabareesh V, Balaram P (2006) Tandem electrospray mass spectrometric studies of proton and sodium ion adducts of neutral peptides with modified N- and C-termini: synthetic model peptides and microheterogeneous peptaibol antibiotics. Rapid Commun Mass Spectrom 20:618–628. https://doi.org/10.1002/rcm.2349

    Article  CAS  PubMed  Google Scholar 

  64. Das MK, Raghothama S, Balaram P (1986) Membrane channel forming polypeptides. Molecular conformation and mitochondrial uncoupling activity of antiamoebin, an alpha-aminoisobutyric acid containing peptide. Biochemistry 25:7110–7117. https://doi.org/10.1021/bi00370a053

    Article  CAS  PubMed  Google Scholar 

  65. Mathew MK, Nagaraj R, Balaram P (1981) Alamethicin and synthetic peptide fragments as uncouplers of mitochondrial oxidative phosphorylation. Effect of chain length and charge. Biochem Biophys Res Commun 98:548–555. https://doi.org/10.1016/0006-291x(81)90875-5

    Article  CAS  PubMed  Google Scholar 

  66. Cross RL, Kohlbrenner WE (1978) The mode of inhibition of oxidative phosphorylation by efrapeptin (A23871). Evidence for an alternating site mechanism for ATP synthesis. J Biol Chem 253(14):4865–4873

    Article  CAS  PubMed  Google Scholar 

  67. Wada S, Iida A et al (1997) Role of the Gln/Glu residues of trichocellins A-II/B-II in ion-channel formation in lipid membranes and catecholamine secretion from chromaffin cells. Biochim Biophys Acta 1325(2):209–214. https://doi.org/10.1016/s0005-2736(96)00260-x

    Article  CAS  PubMed  Google Scholar 

  68. Hosotani N, Kumagai K et al (2007) SPF-5506-A4, a new peptaibol inhibitor of amyloid beta-peptide formation produced by Trichoderma sp. J Antibiot (Tokyo) 60(3):184–190. https://doi.org/10.1038/ja.2007.20

    Article  CAS  PubMed  Google Scholar 

  69. Hayakawa Y, Hattori Y et al (2008) Efrapeptin J, a new down-regulator of the molecular chaperone GRP78 from a marine Tolypocladium sp. J Antibiot (Tokyo) 61(6):365–371. https://doi.org/10.1038/ja.2008.51

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh R, Noori MT, Ghangrekar MM (2017) Novel application of peptaibiotics derived from Trichoderma sp. for methanogenic suppression and enhanced power generation in microbial fuel cells. RSC Adv 7:10707–10717. https://doi.org/10.1039/C6RA27763B

    Article  Google Scholar 

  71. Dalsgaard PW, Larsen TO et al (2004) Psychrophilin A and cycloaspeptide D, novel cyclic peptides from the psychrotolerant fungus Penicillium ribeum. J Nat Prod 67:878–881. https://doi.org/10.1021/np0303714

    Article  CAS  PubMed  Google Scholar 

  72. Dalsgaard PW, Larsen TO, Christophersen C (2005) Bioactive cyclic peptides from the psychrotolerant fungus Penicillium algidum. J Antibiot (Tokyo) 58(2):141–144. https://doi.org/10.1038/ja.2005.16

    Article  CAS  PubMed  Google Scholar 

  73. Peng J, Gao H et al (2014) Psychrophilins E-H and versicotide C, cyclic peptides from the marine-derived fungus Aspergillus versicolor ZLN-60. J Nat Prod 77(10):2218–2223. https://doi.org/10.1021/np500469b

    Article  CAS  PubMed  Google Scholar 

  74. Malmstrøm J (1999) Unguisins A and B: new cyclic peptides from the marine-derived fungus Emericella unguis. J Nat Prod 62(5):787–789. https://doi.org/10.1021/np980539z

    Article  PubMed  Google Scholar 

  75. Malmstrøm J, Ryager A et al (2002) Unguisin C, a GABA-containing cyclic peptide from the fungus Emericella unguis. Phytochemistry 60(8):869–872. https://doi.org/10.1016/s0031-9422(02)00150-4

    Article  PubMed  Google Scholar 

  76. Akone SH, Daletos G et al (2016) Unguisin F, a new cyclic peptide from the endophytic fungus Mucor irregularis. Z Naturforsch C J Biosci 71(1–2):15–19. https://doi.org/10.1515/znc-2015-0137

    Article  CAS  PubMed  Google Scholar 

  77. Tan LT, Cheng XC et al (2003) Scytalidamides A and B, new cytotoxic cyclic heptapeptides from a marine fungus of the genus Scytalidium. J Org Chem 68(23):8767–8773. https://doi.org/10.1021/jo030191z

    Article  CAS  PubMed  Google Scholar 

  78. Zheng J, Zhu H et al (2009) Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org Lett 11(22):5262–5265. https://doi.org/10.1021/ol902197z

    Article  CAS  PubMed  Google Scholar 

  79. Long J, Chen Y et al (2021) Cyclic peptides from the soft coral-derived fungus Aspergillus sclerotiorum SCSIO 41031. Mar Drugs 19(12):701. https://doi.org/10.3390/md19120701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zheng J, Xu Z et al (2010) Cyclic tripeptides from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J Nat Prod 73(6):1133–1137. https://doi.org/10.1021/np100198h

    Article  CAS  PubMed  Google Scholar 

  81. Sun C, Zhang Z et al (2020) Antibacterial cyclic tripeptides from Antarctica-sponge-derived fungus Aspergillus insulicola HDN151418. Mar Drugs 18(11):532. https://doi.org/10.3390/md18110532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lang G, Blunt JW, Cummings NJ, Cole AL, Munro MH (2005) Hirsutide, a cyclic tetrapeptide from a spider-derived entomopathogenic fungus, Hirsutella sp. J Nat Prod 68(8):1303–1305. https://doi.org/10.1021/np0501536

    Article  CAS  PubMed  Google Scholar 

  83. Pérez-Victoria I, Martín J et al (2012) Isolation and structural elucidation of cyclic tetrapeptides from Onychocola sclerotica. J Nat Prod 75(6):1210–1214. https://doi.org/10.1021/np3000987

    Article  CAS  PubMed  Google Scholar 

  84. Guo H, Kreuzenbeck NB et al (2016) Pseudoxylallemycins A-F, cyclic tetrapeptides with rare Allenyl modifications isolated from Pseudoxylaria sp. X802: a competitor of fungus-growing termite cultivars. Org Lett 18(14):3338–3341. https://doi.org/10.1021/acs.orglett.6b01437

    Article  CAS  PubMed  Google Scholar 

  85. Seto Y, Takahashi K et al (2007) Novel cyclic peptide, epichlicin, from the endophytic fungus, Epichloe typhina. Biosci Biotechnol Biochem 71(6):1470–1475. https://doi.org/10.1271/bbb.60700

    Article  CAS  PubMed  Google Scholar 

  86. Ekanayake DI, Perlatti B et al (2021) Broomeanamides: cyclic octapeptides from an isolate of the Fungicolous ascomycete Sphaerostilbella broomeana from India. J Nat Prod 84(7):2028–2034. https://doi.org/10.1021/acs.jnatprod.1c00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dalsgaard PW, Blunt JW et al (2004) Psychrophilin B and C: cyclic nitropeptides from the psychrotolerant fungus Penicillium rivulum. J Nat Prod 67(11):1950–1952. https://doi.org/10.1021/np0497954

    Article  CAS  PubMed  Google Scholar 

  88. Wang X, Gong X et al (2018) Structural diversity and biological activities of cyclic depsipeptides from fungi. Molecules 23(1):169. https://doi.org/10.3390/molecules23010169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jegorov A, Havlícek V, Sedmera P (1998) Rapid screening of destruxins by liquid chromatography/mass spectrometry. J Mass Spectrom 33(3):274–280. https://doi.org/10.1002/(SICI)1096-9888(199803)33:3<274::AID-JMS630>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  90. Jegorov A, Paizs B et al (2003) Profiling of cyclic hexadepsipeptides roseotoxins synthesized in vitro and in vivo: a combined tandem mass spectrometry and quantum chemical study. Eur J Mass Spectrom (Chichester) 9(2):105–116. https://doi.org/10.1255/ejms.531

    Article  CAS  PubMed  Google Scholar 

  91. Ravindra G, Ranganayaki RS et al (2004) Two novel hexadepsipeptides containing several modified amino acid residues from the fungus Isaria. Chem Biodivers 1:489–504

    Article  CAS  PubMed  Google Scholar 

  92. Isaka M, Palasarn S et al (2005) Cyclohexadepsipeptides from the insect pathogenic fungus Hirsutella nivea BCC 2594. J Nat Prod 68(11):1680–1682. https://doi.org/10.1021/np050246n

    Article  CAS  PubMed  Google Scholar 

  93. Sy-Cordero AA, Graf TN et al (2011) Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the filamentous fungus Trichothecium sp. (MSX 51320). J Nat Prod 74(10):2137–2142. https://doi.org/10.1021/np2004243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang S, Qiu Y et al (2017) Identification of cyclic depsipeptides and their dedicated synthetase from Hapsidospora irregularis. J Nat Prod 80(2):363–370. https://doi.org/10.1021/acs.jnatprod.6b00808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kanaoka M, Isogai A et al (1978) Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agric Biol Chem 42:629–635. https://doi.org/10.1080/00021369.1978.10863029

    Article  CAS  Google Scholar 

  96. Ohyama M, Okada Y et al (2011) Structure-activity relationship of anthelmintic cyclooctadepsipeptides. Biosci Biotechnol Biochem 75(7):1354–1363. https://doi.org/10.1271/bbb.110129

    Article  CAS  PubMed  Google Scholar 

  97. Ding G, Chen AJ et al (2012) Sesquiterpenes and cyclopeptides from the endophytic fungus Trichoderma asperellum SAMUELS, LIECKF & NIRENBERG. Chem Biodivers 9(6):1205–1212. https://doi.org/10.1002/cbdv.201100185

    Article  CAS  PubMed  Google Scholar 

  98. Elsworth JF, Grove JF (1977) Cyclodepsipeptides from Beauveria bassiana. Part 1. Beauverolides H and I. J Chem Soc Perkin Trans 13:270–273

    Article  Google Scholar 

  99. Elsworth JF, Grove JF (1980) Cyclodepsipeptides from Beauveria bassiana. Part 2. Beauverolides A to F and their relationship to isarolide. J Chem Soc Perkin Trans 1 8:1795–1799

    Article  Google Scholar 

  100. Grove JF (1980) Cyclodepsipeptides from Beauveria bassiana. Part 3. The isolation of beauverolides Ba, Ca, Ja, and Ka. J Chem Soc Perkin Trans 1(12):2878–2880

    Article  Google Scholar 

  101. Ding LJ, Yuan W et al (2016) Oryzamides A-E, Cyclodepsipeptides from the sponge-derived fungus Nigrospora oryzae PF18. J Nat Prod 79(8):2045–2052. https://doi.org/10.1021/acs.jnatprod.6b00349

    Article  CAS  PubMed  Google Scholar 

  102. Vining LC, Taber WA (1962) Isariin, A new depsipeptide from Isaria cretacea. Can J Chem 40:1579–1584. https://doi.org/10.1139/v62-239

    Article  CAS  Google Scholar 

  103. Baute R, Deffieux G et al (1981) New insecticidal cyclodepsipeptides from the fungus Isaria felina. I. Production, isolation and insecticidal properties of isariins B, C and D. J Antibiot (Tokyo) 34(10):1261–1265. https://doi.org/10.7164/antibiotics.34.1261

    Article  CAS  PubMed  Google Scholar 

  104. Deffieux G, Merlet D et al (1981) New insecticidal cyclodepsipeptides from the fungus Isaria felina. II. Structure elucidation of isariins B, C and D. J Antibiot (Tokyo) 34(10):1266–1270. https://doi.org/10.7164/antibiotics.34.1266

    Article  CAS  PubMed  Google Scholar 

  105. Langenfeld A, Blond A et al (2011) Insecticidal cyclodepsipeptides from Beauveria felina. J Nat Prod 74(4):825–830. https://doi.org/10.1021/np100890n

    Article  CAS  PubMed  Google Scholar 

  106. Chiang YM, Szewczyk E et al (2008) Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol 15(6):527–532. https://doi.org/10.1016/j.chembiol.2008.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Oh DC, Kauffman CA et al (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70(4):515–520. https://doi.org/10.1021/np060381f

    Article  CAS  PubMed  Google Scholar 

  108. Kovaleva V, Bukhteeva I et al (2020) Plant defensins from a structural perspective. Int J Mol Sci 21(15):5307. https://doi.org/10.3390/ijms21155307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2(9):727–738. https://doi.org/10.1038/nrmicro976

    Article  CAS  PubMed  Google Scholar 

  110. Sathoff AE, Samac DA (2019) Antibacterial activity of plant defensins. Mol Plant-Microbe Interact 32(5):507–514. https://doi.org/10.1094/MPMI-08-18-0229-CR

    Article  CAS  PubMed  Google Scholar 

  111. Schneider JJ, Unholzer A et al (2005) Human defensins. J Mol Med (Berl) 83(8):587–595. https://doi.org/10.1007/s00109-005-0657-1

    Article  CAS  PubMed  Google Scholar 

  112. Koehbach J (2017) Structure-activity relationships of insect defensins. Front Chem 5:45. https://doi.org/10.3389/fchem.2017.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Qi S, Gao B, Zhu S (2022) A fungal defensin inhibiting bacterial cell-wall biosynthesis with non-hemolysis and serum stability. J Fungi (Basel) 8(2):174. https://doi.org/10.3390/jof8020174

    Article  CAS  PubMed  Google Scholar 

  114. Wu J, Gao B, Zhu S (2014) The fungal defensin family enlarged. Pharmaceuticals (Basel) 7(8):866–880. https://doi.org/10.3390/ph7080866

    Article  CAS  PubMed  Google Scholar 

  115. Mygind PH, Fischer RL et al (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980. https://doi.org/10.1038/nature04051

    Article  CAS  PubMed  Google Scholar 

  116. Schneider T, Kruse T et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328(5982):1168–1172. https://doi.org/10.1126/science.1185723

    Article  CAS  PubMed  Google Scholar 

  117. Ostergaard C, Sandvang D et al (2009) High cerebrospinal fluid (CSF) penetration and potent bactericidal activity in CSF of NZ2114, a novel plectasin variant, during experimental pneumococcal meningitis. Antimicrob Agents Chemother 53(4):1581–1585. https://doi.org/10.1128/AAC.01202-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Oeemig JS, Lynggaard C et al (2012) Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J Biol Chem 287(50):42361–42372. https://doi.org/10.1074/jbc.M112.382028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSαβ defensins. Mol Immunol 45(3):828–838. https://doi.org/10.1016/j.molimm.2007.06.354

    Article  CAS  PubMed  Google Scholar 

  120. Zhu S, Gao B, Tytgat J (2005) Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily. Cell Mol Life Sci 62(19–20):2257–2269. https://doi.org/10.1007/s00018-005-5200-6

    Article  CAS  PubMed  Google Scholar 

  121. Essig A, Hofmann D et al (2014) Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 289(50):34953–34964. https://doi.org/10.1074/jbc.M114.599878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu S, Gao B et al (2012) Dermatophytic defensin with antiinfective potential. Proc Natl Acad Sci U S A 109(22):8495–8500. https://doi.org/10.1073/pnas.1201263109

    Article  PubMed  PubMed Central  Google Scholar 

  123. Hallen HE, Luo H et al (2007) Gene family encoding the major toxins of lethal Amanita mushrooms. Proc Natl Acad Sci U S A 104(48):19097–19101. https://doi.org/10.1073/pnas.0707340104

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liermann JC, Opatz T et al (2009) Omphalotins E-I, five oxidatively modified nematicidal cyclopeptides from Omphalotus olearius. Eur J Org Chem:1256–1262. https://doi.org/10.1002/ejoc.200801068

  125. Johnson RD, Lane GA et al (2015) A novel family of cyclic oligopeptides derived from ribosomal peptide synthesis of an in planta-induced gene, gigA, in Epichloë endophytes of grasses. Fungal Genet Biol 85:14–24. https://doi.org/10.1016/j.fgb.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  126. Letscher-Bru V, Herbrecht R (2003) Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother 51(3):513–521. https://doi.org/10.1093/jac/dkg117

    Article  CAS  PubMed  Google Scholar 

  127. Johnson MD, Perfect JR (2003) Caspofungin: first approved agent in a new class of antifungals. Expert Opin Pharmacother 4(5):807–823. https://doi.org/10.1517/14656566.4.5.807

    Article  PubMed  Google Scholar 

  128. Stone EA, Fung HB, Kirschenbaum HL (2002) Caspofungin: an echinocandin antifungal agent. Clin Ther 24(3):351–377. https://doi.org/10.1016/s0149-2918(02)85039-1

    Article  CAS  PubMed  Google Scholar 

  129. Zhang H, Chen S (2022) Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chem Biol 3:18–31. https://doi.org/10.1039/d1cb00154j

    Article  CAS  PubMed  Google Scholar 

  130. Spampinato C, Leonardi D (2013) Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int 2013:204237. https://doi.org/10.1155/2013/204237

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sumiyoshi M, Miyazaki T et al (2020) Novel and potent antimicrobial effects of caspofungin on drug-resistant Candida and bacteria. Sci Rep 10(1):17745. https://doi.org/10.1038/s41598-020-74749-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Survase SA, Kagliwal LD et al (2011) Cyclosporin A—a review on fermentative production, downstream processing and pharmacological applications. Biotechnol Adv 29(4):418–435. https://doi.org/10.1016/j.biotechadv.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  133. Tugwell P, Pincus T et al (1995) Combination therapy with cyclosporine and methotrexate in severe rheumatoid arthritis. The methotrexate-cyclosporine combination study group. N Engl J Med 333(3):137–141. https://doi.org/10.1056/NEJM199507203330301

    Article  CAS  PubMed  Google Scholar 

  134. Yocum DE (1996) Combination therapy with cyclosporin in rheumatoid arthritis. Rheumatology 35(suppl 2):19–23. https://doi.org/10.1093/rheumatology/35.suppl_2.19

    Article  CAS  Google Scholar 

  135. Galgóczy L, Yap A, Marx F (2019) Cysteine-rich antifungal proteins from filamentous fungi are promising bioactive natural compounds in anti-Candida therapy. Isr J Chem 59:360–370. https://doi.org/10.1002/ijch.201800168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Magana M, Pushpanathan M et al (2020) The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis 20(9):e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3

    Article  CAS  PubMed  Google Scholar 

  137. Bills G, Li Y et al (2014) New insights into the echinocandins and other fungal non-ribosomal peptides and peptaibiotics. Nat Prod Rep 31(10):1348–1375. https://doi.org/10.1039/c4np00046c

    Article  CAS  PubMed  Google Scholar 

  138. Oide S, Turgeon BG (2020) Natural roles of nonribosomal peptide metabolites in fungi. Mycoscience 61(3):101–110., ISSN 1340-3540. https://doi.org/10.1016/j.myc.2020.03.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sabareesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabareesh, V., Gowri, V.S. (2023). A Bird’s-Eye View of Fungal Peptides. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_6

Download citation

Publish with us

Policies and ethics