Skip to main content

Gravity Waves in Free Atmosphere

  • Chapter
  • First Online:
An Introduction to Mesoscale Meteorology
  • 270 Accesses

Abstract

Gravity wave (GW) is one of the basic waves in atmosphere, and also one of the most simple and basic mesoscale motion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Booker, J.R., and F.P. Bretherton. 1967. The critical layer for internal gravity waves in a shear flow. Journal of Fluid Mechanics 27: 513–539.

    Article  Google Scholar 

  • Curry, M.J., and R.C. Murty. 1974. Thunderstorm generated gravity waves [J]. Journal of Atmospheric Science 31 (5): 1402−1408.

    Google Scholar 

  • Ferretti, R., F. Einaudi, and W.L. Uccellini. 1988. Wave disturbances associated with the red river valley severe weather outbreak of 10–11 April 1979, [J]. Meteorology & Atmospheric Physics.

    Google Scholar 

  • Gossard, E.E., and W.H. Hooke. 1975. Waves in the atmosphere: Developments in atmospheric sciences, vol. II, 456. Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Hooke, W.H. 1986. Gravity wave. In Mesoscale meteorology and forecasting, ed. P.S. Ray, 272–288. Boston: American Meteorological Society.

    Google Scholar 

  • Howard, L.N. 1961. Note on a paper of John W Miles. Journal of Fluid Mechanics 10: 509–512.

    Article  Google Scholar 

  • Koch, S.E., and P.B. Dorian. 1988. A mesoscale gravity waves event observed during CCOPE. Part III: Wave environment and probable source mechanisms. Monthly Weather Review 116: 2570–2592.

    Article  Google Scholar 

  • Koch, S.E., et al. 1985. Observed interactions between strong convection and internal gravity waves. Preprints, 14th conference on severe local storms, Indianapolis, 198–201. American Meteorological Society.

    Google Scholar 

  • Koch, S.E., F. Einaudi, P.B. Dorian, et al. 1993. A mesoscale gravity waves event observed during CCOPE. Part IV: Stability analysis and Doppler derived vertical structure. Monthly Weather Review 121: 2483–2510.

    Article  Google Scholar 

  • Koch, S., F. Zhang, M.L. Kaplan, et al. 2001. Numerical simulation of a gravity wave event observed during CCOPE. Part 3: Mountain-plain solenoids in the generation of the second wave episode. Monthly Weather Review 129: 909–932.

    Article  Google Scholar 

  • Li, M.C. 1978. Triggering effect of gravity waves on heavy rainstorms. Chinese Journal of Atmospheric Sciences 2 (3): 201–209.

    Google Scholar 

  • Lindzen, R.S., and K.K. Tung. 1976. Banded convective activity and ducted gravity waves. Monthly Weather Review 104: 1602–1617.

    Article  Google Scholar 

  • Ludlam, F.H. 1967. Characteristics of billow cloud and their relation to clear-air turbulence. Quarterly Journal of the Royal Meteorological Society 93: 419–435.

    Article  Google Scholar 

  • Miles, J.W. 1961. On the stability of heterogeneous shear flows. Journal of Fluid Mechanics 10: 496–508.

    Article  Google Scholar 

  • Qin, W.J., S.W. Shou, S.T. Gao, et al. 2010. Observational and numerical studies of the inertial gravity waves in a hailstorm process. Journal of Geophysics 53 (5): 1039–1049.

    Google Scholar 

  • Ralph, F.M., C. Mazaudier, M. Crochet, and S.V. Venkateswaran. 1993. Doppler sodar and radar wind–profiler observations of gravity-waves activity associated with a gravity current. Monthly Weather Review 121: 444–463.

    Google Scholar 

  • Ramamurthy, M.K., R.M. Rauber, B.P. Collins, et al. 1993. A comparative study of large amplitude gravity waves events. Monthly Weather Review 121: 2951–2974.

    Article  Google Scholar 

  • Reed, R.J., and K.R. Hardy. 1972. A case study of persistent, intense clear air turbulence in upper level frontal zone. Journal of Applied Meteorology and Climatology 11: 541–549.

    Article  Google Scholar 

  • Stobie, J.G., F. Einaudi, and L.W. Uccellini. 1983. A case study of gravity waves convective storms interaction: 9 May 1979. Journal of Atmospheric Science 40: 2804–2830.

    Google Scholar 

  • Sun, Y.H., Z.C. Li, and S.W. Shou. 2015. The features and impacting of mesoscale gravity waves in a heavy snow storm precess. Acta Meteorologica Sinica 73 (4): 697–710.

    Google Scholar 

  • Uccellini, L.W., and D.R. Johnson. 1979. The coupling of upper and lower tropospheric jet stream and implication for the development of severe convective storm[J]. Monthly Weather Review 107 (6): 682–703.

    Google Scholar 

  • Uccellini, L.M., and S.E. Koch. 1987. The synoptic setting and possible energy source for mesoscale wave disturbance. Monthly Weather Review 115: 721–729.

    Article  Google Scholar 

  • Zack, J.W., and M.L. Kaplan. 1987. Numerical simulation of the subsynoptic features associated with the AVE-SESAME I case. Part I: The preconvective environment. Monthly Weather Review 115: 2367–2393.

    Article  Google Scholar 

  • Zhang, F. 2004. Generation of mesoscale gravity waves in the upper-tropospheric jet-front systems. Journal of Atmospheric Science 61: 440–457.

    Article  Google Scholar 

  • Zhang, F., S.E. Koch, C.A. Davis, et al. 2001. Wavelet analysis and the governing dynamics of a large-amplitude gravity wave event along the East Coast of the United States. Quarterly Journal of the Royal Meteorological Society 127: 2209–2245.

    Article  Google Scholar 

  • Zhang, F., S.E. Koch, and M.L. Kaplan. 2003. Numerical simulations of a large-amplitude gravity wave event. Meteorology and Atmospheric Physics 84: 199–216.

    Article  Google Scholar 

  • Zhang, Y., S.W. Shou, Y.Q. Wang, et al. 2008. The mesoscale feature of a heavy snow process over Shandong peninsula. Journal of Nanjing University of Information Science and Technology 31 (1): 51–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowen Shou .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 China Meteorological Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shou, S., Li, S., Shou, Y., Yao, X. (2023). Gravity Waves in Free Atmosphere. In: An Introduction to Mesoscale Meteorology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8606-2_3

Download citation

Publish with us

Policies and ethics