Skip to main content

Bone Contouring in Oral and Maxillofacial Surgery: Definition, Indications, and Manufacturing Considerations

  • Chapter
  • First Online:
Emerging Technologies in Oral and Maxillofacial Surgery
  • 263 Accesses

Abstract

Replacement of maxillofacial defects is challenging due to the complex 3D contour. Computer-designed patient-specific implant (PSI) has stability, predictable results, accuracy, and defect adaptation. These prostheses are used to restore the form and function of the bone. Bone contouring means the reconstruction of bone defects that have only disturbed the standard form of the face without any specific roll in the function. This chapter brings up the process of reconstructing facial defects with bone contouring PSIs and briefly describes possible complications and commonly used materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thayaparan GK, Lewis PM, Thompson RG, D’Urso PS. Patient-specific implants for craniomaxillofacial surgery: a manufacturer’s experience. Ann Med Surg (Lond). 2021;66:102420.

    PubMed  Google Scholar 

  2. Chu HW, Shi FP, Chen GF. Application of CAD/CAM technique in three-dimensional reconstruction of zygomatic complex defect. Zhejiang Da Xue Xue Bao Yi Xue Ban = J Zhejiang Univ Med Sci. 2012;41(3):245–9.

    Google Scholar 

  3. Owusu JA, Boahene K. Update of patient-specific maxillofacial implant. Curr Opin Otolaryngol Head Neck Surg. 2015;23(4):261–4.

    Article  PubMed  Google Scholar 

  4. Alasseri N, Alasraj A. Patient-specific implants for maxillofacial defects: challenges and solutions. Maxillofac Plast Reconstr Surg. 2020;42(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hsieh TY, Dhir K, Binder WJ, Hilger PA. Alloplastic facial implants. Facial Plast Surg. 2021;37(6):741–50.

    Article  CAS  PubMed  Google Scholar 

  6. Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746, 1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aydin S, Kucukyuruk B, Abuzayed B, Aydin S, Sanus GZ. Cranioplasty: review of materials and techniques. J Neurosci Rural Pract. 2011;2(2):162–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goiato MC, Anchieta RB, Pita MS, dos Santos DM. Reconstruction of skull defects: currently available materials. J Craniofac Surg. 2009;20(5):1512–8.

    Article  PubMed  Google Scholar 

  9. Coelho F, Oliveira AM, Paiva WS, Freire FR, Calado VT, Amorim RL, et al. Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty. Neuropsychiatr Dis Treat. 2014;10:695–701.

    PubMed  PubMed Central  Google Scholar 

  10. Mah JK, Kass RA. The impact of cranioplasty on cerebral blood flow and its correlation with clinical outcome in patients underwent decompressive craniectomy. Asian J Neurosurg. 2016;11(1):15–21.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nalbach SV, Ropper AE, Dunn IF, Gormley WB. Craniectomy-associated progressive extra-axial collections with treated hydrocephalus (CAPECTH): redefining a common complication of decompressive craniectomy. J Clin Neurosci. 2012;19(9):1222–7.

    Article  PubMed  Google Scholar 

  12. Sanan A, Haines SJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery. 1997;40(3):588–603.

    CAS  PubMed  Google Scholar 

  13. Abuzayed B, Tuzgen S, Canbaz B, Yuksel O, Tutunculer B, Sanus GZ. Reconstruction of growing skull fracture with in situ galeal graft duraplasty and porous polyethylene sheet. J Craniofac Surg. 2009;20(4):1245–9.

    Article  PubMed  Google Scholar 

  14. Black SP. Reconstruction of the supraorbital ridge using aluminum. Surg Neurol. 1978;9(2):121–8.

    CAS  PubMed  Google Scholar 

  15. Mohammadi F, Azari A, Nikparto N, Ziaei H. Reconstruction of the occipital and parietal congenital defect with 3D custom-made titanium prosthesis: a case report with four and a half years of follow-up and a brief review of literature. Case Rep Dent. 2021;2021:7027701.

    PubMed  PubMed Central  Google Scholar 

  16. Alkhaibary A, Alharbi A, Alnefaie N, Oqalaa Almubarak A, Aloraidi A, Khairy S. Cranioplasty: a comprehensive review of the history, materials, surgical aspects, and complications. World Neurosurg. 2020;139:445–52.

    Article  PubMed  Google Scholar 

  17. Honeybul S, Morrison DA, Ho KM, Lind CRP, Geelhoed E. A randomised controlled trial comparing autologous cranioplasty with custom-made titanium cranioplasty: long-term follow-up. Acta Neurochir. 2018;160(5):885–91.

    Article  PubMed  Google Scholar 

  18. Hamböck M, Hosmann A, Seemann R, Wolf H, Schachinger F, Hajdu S, et al. The impact of implant material and patient age on the long-term outcome of secondary cranioplasty following decompressive craniectomy for severe traumatic brain injury. Acta Neurochir. 2020;162(4):745–53.

    Article  PubMed  Google Scholar 

  19. Kotecha S, Ferro A, Harrison P, Fan K. Orbital reconstruction: a systematic review and meta-analysis evaluating the role of patient-specific implants. Oral Maxillofac Surg. 2022; https://doi.org/10.1007/s10006-022-01074-x.

  20. Boyette JR, Pemberton JD, Bonilla-Velez J. Management of orbital fractures: challenges and solutions. Clin Ophthalmol. 2015;9:2127–37.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vasile VA, Istrate S, Iancu RC, Piticescu RM, Cursaru LM, Schmetterer L, et al. Biocompatible materials for orbital wall reconstruction-an overview. Materials (Basel). 2022;15(6):2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmerer RM, Ellis E 3rd, Aniceto GS, Schramm A, Wagner ME, Grant MP, et al. A prospective multicenter study to compare the precision of posttraumatic internal orbital reconstruction with standard preformed and individualized orbital implants. J Craniomaxillofac Surg. 2016;44(9):1485–97.

    Article  PubMed  Google Scholar 

  23. Shi H, Yin X, Hu Y. Solitary neurofibroma of the zygoma: three-dimensional virtual resection and patient-specific polyetheretherketone implant reconstruction. J Craniofac Surg. 2022;33:e781.

    Article  PubMed  Google Scholar 

  24. Jo H, Lee UL. Zygoma augmentation with 3D printed bioactive glass-ceramic implant. J Craniofac Surg. 2022;33:e521.

    Article  PubMed  Google Scholar 

  25. Heredia-Alcalde I, Trapero A, Andresen-Lorca B, Pérez-García A. Simultaneous mandible and zygomatic arch reconstruction with a single free fibula flap. Microsurgery. 2021;41(8):818–9.

    Article  PubMed  Google Scholar 

  26. French KEM, Gormley M, Kana A, Deacon S, Revington PJ. Outcomes and complications associated with malar onlays: literature review and case series of 119 implants. Br J Oral Maxillofac Surg. 2020;58(9):1110–5.

    Article  CAS  PubMed  Google Scholar 

  27. Chepurnyi Y, Kustro T, Chernogorskyi D, Zhukovtseva O, Kanura O, Kopchak A. Application of patient-specific implants as alternative approach to Zygoma defect management - a retrospective study. Ann Maxillofac Surg. 2021;11(1):91–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tessier P. The definitive plastic surgical treatment of the severe facial deformities of craniofacial dysostosis: crouzon’s and apert’s diseases. Plast Reconstr Surg. 1971;48(5):419–42.

    Article  CAS  PubMed  Google Scholar 

  29. Rohner D, Tan BK, Song C, Yeow V, Hammer B. Repair of composite zygomatico-maxillary defects with free bone grafts and free vascularized tissue transfer. J Craniomaxillofac Surg. 2001;29(6):337–43.

    Article  CAS  PubMed  Google Scholar 

  30. Yang SJ, Choi JW, Chung YS, Ahn KM, Hong JP, Lee TJ, et al. Midfacial degloving approach for resectioning and reconstruction of extensive maxillary fibrous dysplasia. J Craniofac Surg. 2012;23(6):1658–61.

    Article  PubMed  Google Scholar 

  31. Ahn SJ, Hong JW, Kim YO, Lew DH, Lee WJ. Treatment of fibrous dysplasia of the zygomaticomaxillary complex with radical resection and three-dimensional reconstruction with autologous calvarial bone graft. Arch Craniofac Surg. 2018;19(3):200–4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Modabber A, Gerressen M, Ayoub N, Elvers D, Stromps JP, Riediger D, et al. Computer-assisted zygoma reconstruction with vascularized iliac crest bone graft. Int J Med Robot. 2013;9(4):497–502.

    Article  PubMed  Google Scholar 

  33. Nicot R, Schlund M, Sentucq C, Raoul G. A new orbito-zygomatic complex reconstruction technique using computer-aided design and manufacturing-assisted harvest of autologous calvarial bone in cases of orbito-zygomatic benign tumor. J Oral Maxillofac Surg. 2019;77(5):1082–91.

    Article  PubMed  Google Scholar 

  34. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B. 2011;49(12):832–64.

    Article  CAS  Google Scholar 

  35. Shi C, Yuan Z, Han F, Zhu C, Li B. Polymeric biomaterials for bone regeneration. Ann Jt. 2016;1:27.

    Article  Google Scholar 

  36. Bracco P, Bellare A, Bistolfi A, Affatato S. Ultra-high molecular weight polyethylene: influence of the chemical, physical and mechanical properties on the wear behavior. A review. Materials (Basel). 2017;10(7):791.

    Article  PubMed  Google Scholar 

  37. Liao C, Li Y, Tjong SC. Polyetheretherketone and its composites for bone replacement and regeneration. Polymers (Basel). 2020;12(12):2858.

    Article  CAS  PubMed  Google Scholar 

  38. Järvinen S, Suojanen J, Kormi E, Wilkman T, Kiukkonen A, Leikola J, et al. The use of patient specific polyetheretherketone implants for reconstruction of maxillofacial deformities. J Craniomaxillofac Surg. 2019;47(7):1072–6.

    Article  PubMed  Google Scholar 

  39. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alonso-Rodriguez E, Cebrián JL, Nieto MJ, Del Castillo JL, Hernández-Godoy J, Burgueño M. Polyetheretherketone custom-made implants for craniofacial defects: report of 14 cases and review of the literature. J Craniomaxillofac Surg. 2015;43(7):1232–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lethaus B, Safi Y, ter Laak-Poort M, Kloss-Brandstätter A, Banki F, Robbenmenke C, et al. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma. 2012;29(6):1077–83.

    Article  PubMed  Google Scholar 

  42. Lim H-K, Choi Y-J, Choi W-C, Song I-S, Lee U-L. Reconstruction of maxillofacial bone defects using patient-specific long-lasting titanium implants. Sci Rep. 2022;12(1):7538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith PM. The history and use of our Earth’s chemical elements: a reference guide, (Robert E. Krebs). Washington, DC: ACS Publications; 2007.

    Google Scholar 

  44. Wiggins A, Austerberry R, Morrison D, Ho KM, Honeybul S. Cranioplasty with custom-made titanium plates—14 years experience. Neurosurgery. 2013;72(2):248–56.

    Article  PubMed  Google Scholar 

  45. Roh H, Kim J, Kim JH, Chong K, Yoon WK, Kwon TH, et al. Analysis of complications after cranioplasty with a customized three-dimensional titanium mesh plate. World Neurosurg. 2019;123:e39–44.

    Article  PubMed  Google Scholar 

  46. Ghosh S, Pramanick D, Ray A, Burman R, Saha A. Fronto-orbital reconstruction using polymethyl methacrylate implant. Natl J Maxillofac Surg. 2017;8(2):153–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zanotti B, Zingaretti N, Verlicchi A, Robiony M, Alfieri A, Parodi PC. Cranioplasty: review of materials. J Craniofac Surg. 2016;27:2061–72.

    Article  PubMed  Google Scholar 

  48. Ridwan-Pramana A, Idema S, Te Slaa S, Verver F, Wolff J, Forouzanfar T, et al. Polymethyl methacrylate in patient-specific implants: description of a new three-dimension technique. J Craniofac Surg. 2019;30(2):408–11.

    Article  PubMed  Google Scholar 

  49. Blumer M, Pejicic R, Gander T, Johner JP, Held U, Wagner ME. Customized titanium reconstruction of orbital fractures using a mirroring technique for virtual reconstruction and 3D model printing. J Oral Maxillofac Surg. 2021;79(1):200.e1–9.

    Article  PubMed  Google Scholar 

  50. Mandolini M, Caragiuli M, Brunzini A, Mazzoli A, Pagnoni M. A procedure for designing custom-made implants for forehead augmentation in people suffering from apert syndrome. J Med Syst. 2020;44(9):146.

    Article  PubMed  PubMed Central  Google Scholar 

  51. van der Meer WJ, Bos RR, Vissink A, Visser A. Digital planning of cranial implants. Br J Oral Maxillofac Surg. 2013;51(5):450–2.

    Article  PubMed  Google Scholar 

  52. Marreiros FM, Heuzé Y, Verius M, Unterhofer C, Freysinger W, Recheis W. Custom implant design for large cranial defects. Int J Comput Assist Radiol Surg. 2016;11(12):2217–30.

    Article  PubMed  Google Scholar 

  53. Gerstl JVE, Rendon LF, Burke SM, Doucette J, Mekary RA, Smith TR. Complications and cosmetic outcomes of materials used in cranioplasty following decompressive craniectomy—a systematic review, pairwise meta-analysis, and network meta-analysis. Acta Neurochir. 2022;164:3075.

    Article  PubMed  Google Scholar 

  54. van de Vijfeijken S, Münker T, Spijker R, Karssemakers LHE, Vandertop WP, Becking AG, et al. Autologous bone is inferior to alloplastic cranioplasties: safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg. 2018;117:443–52.e8.

    Article  PubMed  Google Scholar 

  55. Alkhaibary A, Alharbi A, Abbas M, Algarni A, Abdullah JM, Almadani WH, et al. Predictors of surgical site infection in autologous cranioplasty: a retrospective analysis of subcutaneously preserved bone flaps in abdominal pockets. World Neurosurg. 2020;133:e627–e32.

    Article  PubMed  Google Scholar 

  56. Rosenthal G, Ng I, Moscovici S, Lee KK, Lay T, Martin C, et al. Polyetheretherketone implants for the repair of large cranial defects: a 3-center experience. Neurosurgery. 2014;75(5):523–9; discussion 8–9

    Article  PubMed  Google Scholar 

  57. Abbas SEM, MA EL. Soft tissue dehiscence associated with a titanium patient-specific implant: a prosthetic solution as an alternative to soft tissue grafting. Case Rep Dent. 2021;2021:5125375.

    PubMed  PubMed Central  Google Scholar 

  58. Habib LA, Yoon MK. Patient specific implants in orbital reconstruction: a pilot study. Am J Ophthalmol Case Rep. 2021;24:101222.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakhtiari, Z., Khojasteh, A. (2023). Bone Contouring in Oral and Maxillofacial Surgery: Definition, Indications, and Manufacturing Considerations. In: Khojasteh, A., Ayoub, A.F., Nadjmi, N. (eds) Emerging Technologies in Oral and Maxillofacial Surgery . Springer, Singapore. https://doi.org/10.1007/978-981-19-8602-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8602-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8601-7

  • Online ISBN: 978-981-19-8602-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics