Skip to main content

Antibodies as Therapeutic Agents

  • Chapter
  • First Online:
Protein-based Therapeutics

Abstract

Antibodies are immune system components secreted by B-cells. They have a propensity to bind foreign particles in the body. Antibodies have a Y shaped structure and bind to and kill pathogens such as viruses, bacteria, and parasites. In the past three decades, there has been a considerable increase in the number of diagnostic and therapeutic procedures that use monoclonal (mAbs) and polyclonal antibodies (pAbs). In the treatment of cancer, autoimmune diseases, and a variety of neurological disorders, mAbs are more effective than conventional antibodies. The high cost and poor efficacy of mAbs have now been overcome by antibody fragments like Fab, ScFv, and VHH with high binding affinity and ease of production. This chapter describes the basics of antibody structure and function and its use as a therapeutic molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rudikoff S, Giustit AM, Cookt WD, Scharfft MD (1982) Single amino acid substitution altering antigen-binding specificity (immunoglobulin/mutation/phosphocholine/antibody diversity)

    Google Scholar 

  2. Sela-Culang I, Kunik V, Ofran Y (2013) The structural basis of antibody-antigen recognition. Front Immunol 4. https://doi.org/10.3389/fimmu.2013.00302

  3. Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV (2019) Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem 26:396–426. https://doi.org/10.2174/0929867324666170817152554

    Article  CAS  PubMed  Google Scholar 

  4. Schroeder HW, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125. https://doi.org/10.1016/j.jaci.2009.09.046

  5. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50. https://doi.org/10.1146/annurev.immunol.25.022106.141702

    Article  CAS  PubMed  Google Scholar 

  6. Decanniere K, Muyldermans S, Wyns L (2000) Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? J Mol Biol 300:83–91. https://doi.org/10.1006/jmbi.2000.3839

    Article  CAS  PubMed  Google Scholar 

  7. Stanfield RL, Wilson IA, Crowe JE (2014) Antibody structure. https://doi.org/10.1128/microbiolspec.AID

  8. Spiegelberg HL (1989) Biological role of different antibody classes. Appl Immunol 90:22–27

    CAS  Google Scholar 

  9. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325:979–989. https://doi.org/10.1016/S0022-2836(02)01250-0

    Article  CAS  PubMed  Google Scholar 

  10. Vincent A (2002) Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2:797–804. https://doi.org/10.1038/nri916

    Article  CAS  PubMed  Google Scholar 

  11. McInnes IB, Schett G (2011) Mechanism of disease the pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  CAS  PubMed  Google Scholar 

  12. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747. https://doi.org/10.1146/annurev.immunol.23.021704.115707

    Article  CAS  PubMed  Google Scholar 

  13. Davidson A, Diamond B (2001) Autoimmune diseases. N Engl J Med 345:340–350. www.nejm.org

    Article  CAS  PubMed  Google Scholar 

  14. Forthal DN (2015) Functions of antibodies. Antibodies Infect Dis 25–48. https://doi.org/10.1128/9781555817411.ch2

  15. Dimitrov JD, Lacroix-Desmazes S (2020) Noncanonical functions of antibodies. Trends Immunol 41:379–393. https://doi.org/10.1016/j.it.2020.03.006

    Article  CAS  PubMed  Google Scholar 

  16. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:1–17. https://doi.org/10.3389/fimmu.2014.00520

    Article  CAS  Google Scholar 

  17. Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in FcγRIIb binding. J Biol Chem 276:45539–45547. https://doi.org/10.1074/jbc.M107478200

    Article  CAS  PubMed  Google Scholar 

  18. Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37:697–706. https://doi.org/10.1016/S0161-5890(00)00105-X

    Article  CAS  PubMed  Google Scholar 

  19. Nezlin R, Ghetie V (2004) Interactions of immunoglobulins outside the antigen-combining site. Adv Immunol 82:155–215. https://doi.org/10.1016/S0065-2776(04)82004-2

    Article  CAS  PubMed  Google Scholar 

  20. Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20:2361–2370. https://doi.org/10.1021/bi00512a001

    Article  CAS  PubMed  Google Scholar 

  21. Zeitlin L, Cone RA, Moench TR, Whaley KJ (2000) Preventing infectious disease with passive immunization. Microbes Infect 2:701–708. https://doi.org/10.1016/S1286-4579(00)00355-5

    Article  CAS  PubMed  Google Scholar 

  22. Chen RT, Markowitz LE, Albrecht P, Stewart JA, Mofenson LM, Orenstein WA, Orenstein WA (1990) Measles antibody: reevaluation of protective titers. J Infect Dis 162:1036–1042. https://doi.org/10.1093/infdis/162.5.1036

    Article  CAS  PubMed  Google Scholar 

  23. Turnbull PCB, Broster MG, Carman JA, Manchee RJ, Melling J (1986) Development of antibodies to protective antigen and lethal factor components of anthrax toxin in humans and guinea pigs and their relevance to protective immunity. Infect Immun 52:356–363. https://doi.org/10.1128/iai.52.2.356-363.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu PA, Lin NH, Mahon BE, Sobel J, Yu Y, Mody RK, Gu W, Clements J, Kim HJ, Rao AK (2017) Safety and improved clinical outcomes in patients treated with new equine-derived heptavalent botulinum antitoxin. Clin Infect Dis 66:S57–S64. https://doi.org/10.1093/cid/cix816

    Article  CAS  PubMed  Google Scholar 

  25. Finne J, Leinonen M, Mäkelä PH (1983) Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 322:355–357. https://doi.org/10.1016/S0140-6736(83)90340-9

    Article  Google Scholar 

  26. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56. https://doi.org/10.1038/nature19323

    Article  CAS  PubMed  Google Scholar 

  27. Bang LM, Keating GM (2004) Adalimumab: a review of its use in rheumatoid arthritis. BioDrugs 18:121–139. https://doi.org/10.2165/00063030-200418020-00005

    Article  CAS  PubMed  Google Scholar 

  28. Farahmand P, Ringe JD (2012) Denosumab. Chir Prax 75:541–545. https://doi.org/10.29309/tpmj/2012.19.02.2027

    Article  Google Scholar 

  29. Mazumdar S (2009) Raxibacumab. MAbs 1:531–538. https://doi.org/10.4161/mabs.1.6.10195

    Article  PubMed  PubMed Central  Google Scholar 

  30. McCormack PL, Keam SJ (2008) Bevacizumab: a review of its use in metastatic colorectal cancer. Drugs 68:487–506. https://doi.org/10.2165/11205090-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  31. Zhang B (2009) Ofatumumab. MAbs 1:326–331. https://doi.org/10.4161/mabs.1.4.8895

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goadsby PJ, Reuter U, Hallström Y, Broessner G, Bonner JH, Zhang F, Sapra S, Picard H, Mikol DD, Lenz RA (2017) A controlled trial of erenumab for episodic migraine. N Engl J Med 377:2123–2132. https://doi.org/10.1056/nejmoa1705848

    Article  CAS  PubMed  Google Scholar 

  33. Ashina M, Saper J, Cady R, Schaeffler BA, Biondi DM, Hirman J, Pederson S, Allan B, Smith J (2020) Eptinezumab in episodic migraine: a randomized, double-blind, placebo-controlled study (PROMISE-1). Cephalalgia 40:241–254. https://doi.org/10.1177/0333102420905132

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bandeira L, Lewiecki EM, Bilezikian JP (2017) Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther 17:255–263. https://doi.org/10.1080/14712598.2017.1280455

    Article  CAS  PubMed  Google Scholar 

  35. Frampton JE (2020) Inebilizumab: first approval. Drugs 80:1259–1264. https://doi.org/10.1007/s40265-020-01370-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mulero P, Midaglia L, Montalban X (2018) Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord 11. https://doi.org/10.1177/1756286418773025

  37. Evana JR, Bozkurta SB, Thomasa NC, Bagnatoa F (2018) Alemtuzumab for the treatment of multiple sclerosis. Expert Opin Biol Ther 18:323–334. https://doi.org/10.1080/14712598.2018.1425388

    Article  CAS  Google Scholar 

  38. Newcombe C, Newcombe AR (2007) Antibody production: polyclonal-derived biotherapeutics. J Chromatogr B Anal Technol Biomed Life Sci 848:2–7. https://doi.org/10.1016/j.jchromb.2006.07.004

    Article  CAS  Google Scholar 

  39. Siegel J (2006) Safety considerations in IGIV utilization. Int Immunopharmacol 6:523–527. https://doi.org/10.1016/j.intimp.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  40. Buchacher A, Iberer G (2006) Purification of intravenous immunoglobulin G from human plasma – Aspects of yield and virus safety. Biotechnol J 1:148–163. https://doi.org/10.1002/biot.200500037

    Article  CAS  PubMed  Google Scholar 

  41. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136. https://doi.org/10.1038/nbt1142

    Article  CAS  PubMed  Google Scholar 

  42. Sandhu JS (1992) Protein engineering of antibodies. Crit Rev Biotechnol 12:437–462. https://doi.org/10.3109/07388559209114235

    Article  CAS  PubMed  Google Scholar 

  43. Gelfand EW (2006) Differences between IGIV products: impact on clinical outcome. Int Immunopharmacol 6:592–599. https://doi.org/10.1016/j.intimp.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  44. Looney RJ, Huggins J (2006) Use of intravenous immunoglobulin G (IVIG). Best Pract Res Clin Haematol 19:3–25. https://doi.org/10.1016/j.beha.2005.01.032

    Article  CAS  PubMed  Google Scholar 

  45. Martin TD (2006) IGIV: contents, properties, and methods of industrial production – Evolving closer to a more physiologic product. Int Immunopharmacol 6:517–522. https://doi.org/10.1016/j.intimp.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  46. Imbach P, Barandun S, Baumgartner C, Hirt A, Hofer F, Wagner HP (1981) High-dose intravenous gammaglobulin therapy of refractory, in particular idiopathic thrombocytopenia in childhood. Helv Paediatr Acta 36:81–86

    CAS  PubMed  Google Scholar 

  47. Lemieux R, Bazin R, Néron S (2005) Therapeutic intravenous immunoglobulins. Mol Immunol 42:839–848. https://doi.org/10.1016/j.molimm.2004.07.046

    Article  CAS  PubMed  Google Scholar 

  48. Ballow M (2007) Safety of IGIV therapy and infusion-related adverse events. Immunol Res 38:122–132. https://doi.org/10.1007/s12026-007-0003-5

    Article  CAS  PubMed  Google Scholar 

  49. Daugherty AL, Mrsny RJ (2006) Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev 58:686–706. https://doi.org/10.1016/j.addr.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  50. Ballow M (2005) Clinical and investigational considerations for the use of IGIV therapy. Am J Heal Pharm. https://doi.org/10.2146/ajhp050283

  51. Sarantopoulos S, Kao CY, Den W, Sharon J (1994) A method for linking VL and VH region genes that allows bulk transfer between vectors for use in generating polyclonal IgG libraries. J Immunol 152:5344–5351

    Article  CAS  PubMed  Google Scholar 

  52. Haurum JS (2006) Recombinant polyclonal antibodies: the next generation of antibody therapeutics? Drug Discov Today 11:655–660. https://doi.org/10.1016/j.drudis.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  53. Nielsen LS, Baer A, Müller C, Gregersen K, Mønster NT, Rasmussen SK, Weilguny D, Tolstrup AB (2010) Single-batch production of recombinant human polyclonal antibodies. Mol Biotechnol 45:257–266. https://doi.org/10.1007/s12033-010-9270-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jakobovits A (1995) Production of fully human antibodies by transgenic mice. Curr Opin Biotechnol 6:561–566. https://doi.org/10.1016/0958-1669(95)80093-X

    Article  CAS  PubMed  Google Scholar 

  55. Green LL (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23. https://doi.org/10.1016/S0022-1759(99)00137-4

    Article  CAS  PubMed  Google Scholar 

  56. Kohler H (2021) The impact of the hybridoma technology on the R&D of idiotypic antibodies. Monoclon Antib Immonodiagn Immunother 40:2–5. https://doi.org/10.1089/mab.2020.0044

    Article  CAS  Google Scholar 

  57. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480. https://doi.org/10.1038/nrc2394

    Article  CAS  PubMed  Google Scholar 

  58. Ribatti D (2014) From the discovery of monoclonal antibodies to their therapeutic application: an historical reappraisal. Immunol Lett 161:96–99. https://doi.org/10.1016/j.imlet.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  59. Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479. https://doi.org/10.4161/mabs.2.5.12720

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ziegelbauer K, Light DR (2008) Monoclonal antibody therapeutics: leading companies to maximise sales and market share. J Commer Biotechnol 14:65–72. https://doi.org/10.1057/palgrave.jcb.3050081

    Article  Google Scholar 

  61. Liddell E (2013) Antibodies. Immunoass Handb:245–265. https://doi.org/10.1016/B978-0-08-097037-0.00017-8

  62. Yamashita M, Katakura Y, Shirahata S (2007) Recent advances in the generation of human monoclonal antibody. Cytotechnology 55:55–60. https://doi.org/10.1007/s10616-007-9072-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eren R, Lubin I, Terkieltaub D, Ben-Moshe O, Zauberman A, Uhlmann R, Tzahor T, Moss S, Ilan E, Shouval D, Galun E, Daudi N, Marcus H, Reisner Y, Dagan S (1998) Human monoclonal antibodies specific to hepatitis B virus generated in a human/mouse radiation chimera: the Trimera system. Immunology 93:154–161. https://doi.org/10.1046/j.1365-2567.1998.00426.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kipriyanov SM, Le Gall F (2004) Generation and production of engineered antibodies. Appl Biochem Biotechnol Part B Mol Biotechnol 26:39–60. https://doi.org/10.1385/MB:26:1:39

    Article  CAS  Google Scholar 

  65. Khazaeli MB, Conry RM, LoBuglio AF (1994) human immune response to monoclonal antibodies. J Immunother 15:42–52

    Article  CAS  Google Scholar 

  66. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 81:6851–6855. https://doi.org/10.1073/pnas.81.21.6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mease PJ, Van Der Heijde D, Ritchlin CT, Okada M, Cuchacovich RS, Shuler CL, Lin CY, Braun DK, Lee CH, Gladman DD (2017) Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebocontrolled and active (adalimumab)-controlled period of the phase III trail SPIRIT-P1. Ann Rheum Dis 76:79–87. https://doi.org/10.1136/annrheumdis-2016-209709

    Article  CAS  PubMed  Google Scholar 

  68. Dubois EA, Cohen AF (2009) Eculizumab. Br J Clin Pharmacol 68:318–319. https://doi.org/10.1111/j.1365-2125.2009.03491.x

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pierpont TM, Limper CB, Richards KL (2018) Past, present, and future of Rituximab—the world’s first oncology monoclonal antibody therapy. Front Oncol 8. https://doi.org/10.3389/fonc.2018.00163

  70. Ni C, Reddy SP, Wu JJ (2016) Chapter 9 – Infliximab. https://doi.org/10.1016/j.chtm.2016.07.034

  71. Vaklavas C, Forero-Torres A (2012) Safety and efficacy of brentuximab vedotin in patients with Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Ther Adv Hematol 3:209–225. https://doi.org/10.1177/2040620712443076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fox E, Lovett-Racke AE, Gormley M, Liu Y, Petracca M, Cocozza S, Shubin R, Wray S, Weiss MS, Bosco JA, Power SA, Mok K, Inglese M (2021) A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler J 27:420–429. https://doi.org/10.1177/1352458520918375

    Article  CAS  Google Scholar 

  73. Hoy SM (2016) Dinutuximab: a review in high-risk neuroblastoma. Target Oncol 11:247–253. https://doi.org/10.1007/s11523-016-0420-2

    Article  PubMed  Google Scholar 

  74. Schönfeld K, Zuber C, Pinkas J, Häder T, Bernöster K, Uherek C (2017) Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: pre-clinical studies. J Hematol Oncol 10. https://doi.org/10.1186/s13045-016-0380-0

  75. Blick SKA, Keating GM, Wagstaff AJ (2007) Ranibizumab. Drugs 67:1199–1206

    Article  CAS  PubMed  Google Scholar 

  76. Scully M, Cataland SR, Peyvandi F, Coppo P, Knöbl P, Kremer Hovinga JA, Metjian A, de la Rubia J, Pavenski K, Callewaert F, Biswas D, De Winter H, Zeldin RK (2019) Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med 380:335–346. https://doi.org/10.1056/nejmoa1806311

    Article  CAS  PubMed  Google Scholar 

  77. Connock M, Tubeuf S, Malottki K, Uthman A, Round J, Bayliss S, Meads C, Moore D (2010) Certolizumab pegol (CIMZIA®) for the treatment of rheumatoid arthritis. Health Technol Assess 14:1–10. https://doi.org/10.3310/hta14suppl2/01

    Article  CAS  PubMed  Google Scholar 

  78. Hwang WYK, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10. https://doi.org/10.1016/j.ymeth.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  79. Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530. https://doi.org/10.1038/nm1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Almagro JC, Daniels-Wells TR, Perez-Tapia SM, Penichet ML (2018) Progress and challenges in the design and clinical development of antibodies for cancer therapy. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.01751

  81. Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327. https://doi.org/10.1038/332323a0

    Article  CAS  PubMed  Google Scholar 

  82. Epp O, Lattman EE, Schiffer M, Huber R, Palm W (1975) Molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0-Å resolution. Biochemistry 14:4943–4952. https://doi.org/10.1021/bi00693a025

    Article  CAS  PubMed  Google Scholar 

  83. Kim SJ, Park Y, Hong HJ (2005) Antibody engineering for the development of therapeutic antibodies. Mol Cells 20:17–29

    CAS  PubMed  Google Scholar 

  84. Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, McKeever K, Sliwkowski MX (2006) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55:717–727. https://doi.org/10.1007/s00262-005-0058-x

    Article  CAS  PubMed  Google Scholar 

  85. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    CAS  PubMed  Google Scholar 

  86. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M (2012) ScFv antibody: principles and clinical application. Clin Dev Immunol 2012. https://doi.org/10.1155/2012/980250

  87. Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK (2012) Recent trends in antibody-based oncologic imaging Sukhwinder. Cancer Lett 315:97–111. https://doi.org/10.1016/j.canlet.2011.10.017.Recent

    Article  CAS  PubMed  Google Scholar 

  88. Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S (2007) Single chain Fab (scFab) fragment. BMC Biotechnol 7:1–15. https://doi.org/10.1186/1472-6750-7-14

    Article  CAS  Google Scholar 

  89. Mazzocco C, Fracasso G, Germain-Genevois C, Dugot-Senant N, Figini M, Colombatti M, Grenier N, Couillaud F (2016) In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci Rep 6:1–10. https://doi.org/10.1038/srep23314

    Article  CAS  Google Scholar 

  90. Akita EM, Nakai S (1993) Production and purification of Fab’ fragments from chicken egg yolk immunoglobulin Y (IgY). J Immunol Methods 162:155–164. https://doi.org/10.1016/0022-1759(93)90380-P

    Article  CAS  PubMed  Google Scholar 

  91. Bruyns AM, De Jaeger G, De Neve M, De Wilde C, Van Montagu M, Depicker A (1996) Bacterial and plant-produced scFv proteins have similar antigen-binding properties. FEBS Lett 386:5–10. https://doi.org/10.1016/0014-5793(96)00372-9

    Article  CAS  PubMed  Google Scholar 

  92. Skerra A (1993) Bacterial expression of immunoglobulin fragments. Curr Opin Immunol 5:256–262. https://doi.org/10.1016/0952-7915(93)90014-J

    Article  CAS  PubMed  Google Scholar 

  93. Franconi R, Roggero P, Pirazzi P, Arias FJ, Desiderio A, Bitti O, Pashkoulov D, Mattei B, Bracci L, Masenga V, Milne RG, Benvenuto E (1999) Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses. Immunotechnology 4:189–201. https://doi.org/10.1016/S1380-2933(98)00020-7

    Article  CAS  PubMed  Google Scholar 

  94. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee S-M, Lee T, Pope SH, Riordan GS, Whitlow M (n.d.) Single-chain antigen-binding proteins. www.sciencemag.org

  95. Yusakul G, Sakamoto S, Pongkitwitoon B, Tanaka H, Morimoto S (2016) Effect of linker length between variable domains of single chain variable fragment antibody against daidzin on its reactivity. Biosci Biotechnol Biochem 80:1306–1312. https://doi.org/10.1080/09168451.2016.1156482

    Article  CAS  PubMed  Google Scholar 

  96. Miller KD, Weaver-Feldhaus J, Gray SA, Siegel RW, Feldhaus MJ (2005) Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr Purif 42:255–267. https://doi.org/10.1016/j.pep.2005.04.015

    Article  CAS  PubMed  Google Scholar 

  97. Weisser NE, Hall JC (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 27:502–520. https://doi.org/10.1016/j.biotechadv.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  98. Jefferis R (2016) Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res 2016. https://doi.org/10.1155/2016/5358272

  99. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22. https://doi.org/10.1007/s00253-007-1142-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Muyldermans S (2001) Single domain camel antibodies: current status. Rev Mol Biotechnol 74:277–302. https://doi.org/10.1016/S1389-0352(01)00021-6

    Article  CAS  Google Scholar 

  101. English H, Hong J, Ho M (2020) Ancient species offers contemporary therapeutics: an update on shark VNAR single domain antibody sequences, phage libraries and potential clinical applications. Antib Ther 3:1–9. https://doi.org/10.1093/ABT/TBAA001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu Y, Jiang S, Ying T (2017) Single-domain antibodies as therapeutics against human viral diseases. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.01802

  103. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526. https://doi.org/10.1016/S0014-5793(97)01062-4

    Article  CAS  PubMed  Google Scholar 

  104. Leow CH, Cheng Q, Fischer K, McCarthy J (2018) The development of single domain antibodies for diagnostic and therapeutic applications. Antib Eng. https://doi.org/10.5772/intechopen.73324

  105. Arbabi-Ghahroudi M (2017) Camelid single-domain antibodies: historical perspective and future outlook. Front Immunol 8:1–8. https://doi.org/10.3389/fimmu.2017.01589

    Article  CAS  Google Scholar 

  106. Saccodossi N, de Simone EA, Leoni J (2012) Structural analysis of effector functions related motifs, complement activation and hemagglutinating activities in Lama glama heavy chain antibodies. Vet Immunol Immunopathol 145:323–331. https://doi.org/10.1016/j.vetimm.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  107. Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F, Schwarz N, Adriouch S, Boyer O, Seman M, Licea A, Serreze DV, Goldbaum FA, Haag F, Koch-Nolte F (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198:157–174. https://doi.org/10.1007/s00430-009-0116-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797. https://doi.org/10.1146/annurev-biochem-063011-092449

    Article  CAS  PubMed  Google Scholar 

  109. Hoey RJ, Eom H, Horn JR (2019) Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Exp Biol Med 244:1568–1576. https://doi.org/10.1177/1535370219881129

    Article  CAS  Google Scholar 

  110. Henry KA, Hussack G, Collins C, Zwaagstra JC, Tanha J, Mackenzie CR (2016) Isolation of TGF-β-neutralizing single-domain antibodies of predetermined epitope specificity using next-generation DNA sequencing. Protein Eng Des Sel 29:439–443. https://doi.org/10.1093/protein/gzw043

    Article  CAS  PubMed  Google Scholar 

  111. Bond CJ, Marsters JC, Sidhu SS (2003) Contributions of CDR3 to VHH domain stability and the design of monobody scaffolds for naive antibody libraries. J Mol Biol 332:643–655. https://doi.org/10.1016/S0022-2836(03)00967-7

    Article  CAS  PubMed  Google Scholar 

  112. Doyle PJ, Arbabi-Ghahroudi M, Gaudette N, Furzer G, Savard ME, Gleddie S, McLean MD, Mackenzie CR, Hall JC (2008) Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Mol Immunol 45:3703–3713. https://doi.org/10.1016/j.molimm.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  113. Ewert S, Cambillau C, Conrath K, Plückthun A (2002) Biophysical properties of camelid VHH domains compared to those of human VH3 domains. Biochemistry 41:3628–3636. https://doi.org/10.1021/bi011239a

    Article  CAS  PubMed  Google Scholar 

  114. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LGJ, De Geus B (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37:579–590. https://doi.org/10.1016/S0161-5890(00)00081-X

    Article  CAS  PubMed  Google Scholar 

  115. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, Leonhardt H, Magez S, Nguyen VK, Revets H, Rothbauer U, Stijlemans B, Tillib S, Wernery U, Wyns L, Hassanzadeh-Ghassabeh G, Saerens D (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128:178–183. https://doi.org/10.1016/j.vetimm.2008.10.299

    Article  CAS  PubMed  Google Scholar 

  116. Bratkovič T (2010) Progress in phage display: evolution of the technique and its applications. Cell Mol Life Sci 67:749–767. https://doi.org/10.1007/s00018-009-0192-2

    Article  CAS  PubMed  Google Scholar 

  117. Koch-Nolte F, Adriouch S, Bannas P, Krebs C, Scheuplein F, Seman M, Haag F (2006) ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells. Ann Med 38:188–199. https://doi.org/10.1080/07853890600655499

    Article  CAS  PubMed  Google Scholar 

  118. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Resta R, Thompson LF (1997) T cell signalling through CD73. Cell Signal 9:131–139. https://doi.org/10.1016/S0898-6568(96)00132-5

    Article  CAS  PubMed  Google Scholar 

  120. Sträter N (2006) Ecto-5′-nucleotidase: structure function relationships. Purinergic Signal 2:343–350. https://doi.org/10.1007/s11302-006-9000-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Partidá-Sánchez S, Rivero-Nava L, Shi G, Lund FE (2007) CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses. Adv Exp Med Biol 590:171–183

    Article  PubMed  Google Scholar 

  122. Jalkanen S, Salmi M (2001) Cell surface monoamine oxidases enzymes in.pdf. EMBO J 20:3893–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Adriouch S, Hubert S, Pechberty S, Koch-Nolte F, Haag F, Seman M (2007) NAD + released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of Naive T cells in vivo. J Immunol 179:186–194. https://doi.org/10.4049/jimmunol.179.1.186

    Article  CAS  PubMed  Google Scholar 

  124. Tsai SH, Kinoshita M, Kusu T, Kayama H, Okumura R, Ikeda K, Shimada Y, Takeda A, Yoshikawa S, Obata-Ninomiya K, Kurashima Y, Sato S, Umemoto E, Kiyono H, Karasuyama H, Takeda K (2015) The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by Basophils and mast cells. Immunity 42:279–293. https://doi.org/10.1016/j.immuni.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  125. Salmi M, Jalkanen S (2005) Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 5:760–771. https://doi.org/10.1038/nri1705

    Article  PubMed  Google Scholar 

  126. Koch-Nolte F, Reyelt J, Schößow B, Schwarz N, Scheuplein F, Rothenburg S, Haag F, Alzogaray V, Cauerhff A, Goldbaum FA (2007) Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:3490–3498. https://doi.org/10.1096/fj.07-8661com

    Article  CAS  PubMed  Google Scholar 

  127. Rossotti MA, Bélanger K, Henry KA, Tanha J (2021) Immunogenicity and humanization of single-domain antibodies. FEBS J. https://doi.org/10.1111/febs.15809

  128. Scheuplein F, Rissiek B, Driver JP, Chen YG, Koch-Nolte F, Serreze DV (2010) A recombinant heavy chain antibody approach blocks ART2 mediated deletion of an iNKT cell population that upon activation inhibits autoimmune diabetes. J Autoimmun 34:145–154. https://doi.org/10.1016/j.jaut.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  129. Van De Donk NWCJ, Richardson PG, Malavasi F (2018) CD38 antibodies in multiple myeloma: back to the future. Blood 131:13–29. https://doi.org/10.1182/blood-2017-06-740944

    Article  CAS  PubMed  Google Scholar 

  130. Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CMC, Wang XW, Xin D, Zhang P, Koch-Nolte F, Hao Q, Zhang H, Lee HC, Zhao YJ (2016) Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep 6:1–11. https://doi.org/10.1038/srep27055

    Article  CAS  Google Scholar 

  131. Fumey W, Koenigsdorf J, Kunick V, Menzel S, Schütze K, Unger M, Schriewer L, Haag F, Adam G, Oberle A, Binder M, Fliegert R, Guse A, Zhao YJ, Lee HC, Malavasi F, Goldbaum F, Van Hegelsom R, Stortelers C, Bannas P, Koch-Nolte F (2017) Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38+ tumors in mouse models in vivo. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-14112-6

    Article  CAS  Google Scholar 

  132. Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N (2009) Engineered therapeutic antibodies with improved effector functions. Cancer Sci 100:1566–1572. https://doi.org/10.1111/j.1349-7006.2009.01222.x

    Article  CAS  PubMed  Google Scholar 

  133. Natsume A, Niwa R, Satoh M (2009) Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC. Drug Des Develop Ther:7–16. https://doi.org/10.2147/dddt.s4378

  134. Behar G, Sibéril S, Groulet A, Chames P, Pugnière M, Boix C, Sautès-Fridman C, Teillaud JL, Baty D (2008) Isolation and characterization of anti-FcγRIII (CD16) llama single-domain antibodies that activate natural killer cells. Protein Eng Des Sel 21:1–10. https://doi.org/10.1093/protein/gzm064

    Article  CAS  PubMed  Google Scholar 

  135. Cortez-Retamozo V, Backmann N, Senter PD, Wernery U, De Baetselier P, Muyldermans S, Revets H (2004) Efficient cancer therapy with a nanobody-based conjugate. Cancer Res 64:2853–2857. https://doi.org/10.1158/0008-5472.CAN-03-3935

    Article  CAS  PubMed  Google Scholar 

  136. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508. https://doi.org/10.1378/chest.118.2.503

    Article  CAS  PubMed  Google Scholar 

  137. Schmitt H, Neurath MF, Atreya R (2021) Role of the IL23/IL17 pathway in Crohn’s disease. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.622934

  138. Koeffler HP, Gasson J, Ranyard J, Souza L, Shepard M, Munker R (1987) Recombinant human TNF alpha stimulates production of granulocyte colony-stimulating factor. Blood 70:55–59

    Article  CAS  PubMed  Google Scholar 

  139. Charles KA, Kulbe H, Soper R, Escorcio-Correia M, Lawrence T, Schultheis A, Chakravarty P, Thompson RG, Kollias G, Smyth JF, Balkwill FR, Hagemann T (2009) The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 119:3011–3023. https://doi.org/10.1172/JCI39065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Coppieters K, Dreier T, Silence K, De Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, Van De Wiele C, Staelens L, Hostens J, Revets H, Remaut E, Elewaut D, Rottiers P (2006) Formatted anti-tumor necrosis factor α VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54:1856–1866. https://doi.org/10.1002/art.21827

    Article  CAS  PubMed  Google Scholar 

  141. Desmyter A, Spinelli S, Boutton C, Saunders M, Blachetot C, de Haard H, Denecker G, Van Roy M, Cambillau C, Rommelaere H (2017) Neutralization of human interleukin 23 by multivalent nanobodies explained by the structure of cytokine–nanobody complex. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.00884

  142. Wucherpfennig KW (2001) Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest 108:1097–1104. https://doi.org/10.1172/JCI200114235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies: African trypanosomes as paradigm. J Biol Chem 279:1256–1261. https://doi.org/10.1074/jbc.M307341200

    Article  CAS  PubMed  Google Scholar 

  144. Smith PA, Contreras JR, Larenas JJ, Aguillon JC, Garces LH, Perez B, Fryer JL (1997) Immunization with bacterial antigens: piscirickettsiosis. Dev Biol Stand 90:161–166. http://europepmc.org/abstract/MED/9270845

    CAS  PubMed  Google Scholar 

  145. Schoepfer AM, Schaffer T, Seibold-Schmid B, Müller S, Seibold F (2008) Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients. Neurogastroenterol Motil 20:1110–1118. https://doi.org/10.1111/j.1365-2982.2008.01166.x

    Article  CAS  PubMed  Google Scholar 

  146. Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G (2013) Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:581–595. https://doi.org/10.1016/j.immuni.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. El Khattabi M, Adams H, Heezius E, Hermans P, Detmers F, Maassen B, Van Der Ley P, Tommassen J, Verrips T, Stam J (2006) Llama single-chain antibody that blocks lipopolysaccharide binding and signaling: prospects for therapeutic applications. Clin Vaccine Immunol 13:1079–1086. https://doi.org/10.1128/CVI.00107-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Harmsen MM, Van Solt CB, Van Zijderveld-Van Bemmel AM, Niewold TA, Van Zijderveld FG (2006) Selection and optimization of proteolytically stable llama single-domain antibody fragments for oral immunotherapy. Appl Microbiol Biotechnol 72:544–551. https://doi.org/10.1007/s00253-005-0300-7

    Article  CAS  PubMed  Google Scholar 

  149. Szynol A, De Soet JJ, Sieben-Van Tuyl E, Bos JW, Frenken LG (2004) Bactericidal effects of a fusion protein of llama heavy-chain antibodies coupled to glucose oxidase on oral bacteria. Antimicrob Agents Chemother 48:3390–3395. https://doi.org/10.1128/AAC.48.9.3390-3395.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nyambi PN, Mbah HA, Burda S, Williams C, Gorny MK, Nádas A, Zolla-Pazner S (2000) Conserved and exposed epitopes on intact, native, primary human immunodeficiency virus type 1 virions of group M. J Virol 74:7096–7107. https://doi.org/10.1128/jvi.74.15.7096-7107.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Modis Y, Ogata S, Clements D, Harrison SC (2005) Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79:1223–1231. https://doi.org/10.1128/jvi.79.2.1223-1231.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y (2006) Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80:11000–11008. https://doi.org/10.1128/jvi.01735-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Forsman A, Beirnaert E, Aasa-Chapman MMI, Hoorelbeke B, Hijazi K, Koh W, Tack V, Szynol A, Kelly C, McKnight Á, Verrips T, de Haard H, Weiss RA (2008) Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120. J Virol 82:12069–12081. https://doi.org/10.1128/jvi.01379-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Garaicoechea L, Olichon A, Marcoppido G, Wigdorovitz A, Mozgovoj M, Saif L, Surrey T, Parreño V (2008) Llama-derived single-chain antibody fragments directed to rotavirus VP6 protein possess broad neutralizing activity in vitro and confer protection against diarrhea in mice. J Virol 82:9753–9764. https://doi.org/10.1128/jvi.00436-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pant N, Hultberg A, Zhao Y, Svensson L, Pan-Hammarström Q, Johansen K, Pouwels PH, Ruggeri FM, Hermans P, Frenken L, Borén T, Marcotte H, Hammarström L (2006) Lactobacilli expressing variable domain of llama heavy-chain antibody fragments (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis 194:1580–1588. https://doi.org/10.1086/508747

    Article  PubMed  Google Scholar 

  156. Weiner GJ (2015) Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 15:361–370. https://doi.org/10.1038/nrc3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Grainger DW (2004) Controlled-release and local delivery of therapeutic antibodies. Expert Opin Biol Ther 4:1029–1044. https://doi.org/10.1517/14712598.4.7.1029

    Article  CAS  PubMed  Google Scholar 

  158. Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M, Mulkerrin MG (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166:2571–2575. https://doi.org/10.4049/jimmunol.166.4.2571

    Article  CAS  PubMed  Google Scholar 

  159. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem 276:6591–6604. https://doi.org/10.1074/jbc.M009483200

    Article  CAS  PubMed  Google Scholar 

  160. Courtois F, Agrawal NJ, Lauer TM, Trout BL (2016) Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. MAbs 8:99–112. https://doi.org/10.1080/19420862.2015.1112477

    Article  CAS  PubMed  Google Scholar 

  161. Bazin R, Boucher G, Monier G, Chevrier MC, Verrette S, Broly H, Lemieux R (1994) Use of hu-IgG-SCID mice to evaluate the in vivo stability of human monoclonal IgG antibodies. J Immunol Methods 172:209–217. https://doi.org/10.1016/0022-1759(94)90108-2

    Article  CAS  PubMed  Google Scholar 

  162. Kroon DJ, Baldwin-Ferro A, Lalan P (1992) Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm Res An Off J Am Assoc Pharm Sci 9:1386–1393. https://doi.org/10.1023/A:1015894409623

    Article  CAS  Google Scholar 

  163. Kamen MD (1970) controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer. PNAS 66:753–757. https://doi.org/10.1016/S0047-6374(01)00363-3

    Article  Google Scholar 

  164. Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM (2005) In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem 77:1432–1439. https://doi.org/10.1021/ac0494174

    Article  CAS  PubMed  Google Scholar 

  165. Griffiths HR (2000) Antioxidants and protein oxidation. Free Radic Res 33:1–25

    Google Scholar 

  166. Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D (2011) Aggregation, stability, and formulation of human antibody therapeutics. Adv Protein Chem Struct Biol:41–61. https://doi.org/10.1016/B978-0-12-386483-3.00004-5

  167. Kontermann RE, Brinkmann U (2015) Bispecific antibodies. Drug Discov Today 20:838–847. https://doi.org/10.1016/j.drudis.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  168. Bathula NV, Bommadevara H, Hayes JM (2021) Nanobodies: the future of antibody-based immune therapeutics. Cancer Biother Radiopharm 36:109–122. https://doi.org/10.1089/cbr.2020.3941

    Article  CAS  PubMed  Google Scholar 

  169. Singh DB, Tripathi T (2020) Frontiers in protein structure, function, and dynamics. Springer Nature, Singapore

    Book  Google Scholar 

  170. A neutralizing monoclonal antibody for hospitalized patients with covid-19. N Engl J Med (2021) 384:905–914. https://doi.org/10.1056/nejmoa2033130

Download references

Acknowledgment

R.S.R thanks to ICMR New-Delhi for SRF fellowship (file no. 5/3/8/12/ITR-F/2018-ITR).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, R.S., Kumar, S. (2023). Antibodies as Therapeutic Agents. In: Singh, D.B., Tripathi, T. (eds) Protein-based Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-19-8249-1_5

Download citation

Publish with us

Policies and ethics