Skip to main content

Recombinant Production of Therapeutic Proteins

  • Chapter
  • First Online:
Protein-based Therapeutics

Abstract

Therapeutic proteins are gaining importance in disease therapy because of their specificity, efficiency, safety, and reduced side effects. With the dawn of recombinant DNA technology, the genes for the therapeutic proteins can be cloned into various expression systems, thus eliminating the earlier practice of obtaining such proteins from animal or human sources. Various expression systems like bacterial, yeast, mammalian, and plant hosts have been successfully used to recombinantly produce therapeutic proteins. Each expression system has its own benefits and limitations, thus making the expression of all proteins in a single system impossible. Prokaryotic systems like E. coli are well established and widely used for production; however, when it comes to glycosylated proteins, the lack of a secretory system in prokaryotes makes them ineffective. For producing such proteins, eukaryotic systems, particularly mammalian expression systems, are better suited. We discuss the methods for recombinant production of major therapeutic proteins using different expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh DB, Tripathi T (2020) Frontiers in protein structure, function, and dynamics. Springer Nature, Singapore

    Book  Google Scholar 

  2. Dabhole M (2014) Recent innovations in therapeutic recombinant protein. Pharma Bio World

    Google Scholar 

  3. Dingermann T (2008) Recombinant therapeutic proteins: production platforms and challenges. 3:90–97

    Google Scholar 

  4. Owczarek B, Gerszberg A, Hnatuszko-Konka KJBRI (2019) A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals 2019

    Google Scholar 

  5. Hajare A, Dange A, Shetty YJIJOPE (2008) Research, therapeutic protein production and delivery: an overview. 42:104–112

    Google Scholar 

  6. Riggs ADJER (2021) Making, cloning, and the expression of human insulin genes in bacteria: the path to Humulin. 42:374–380

    Google Scholar 

  7. Akash MSH, Rehman K, Tariq M, SJTJoB Chen (2015) Development of therapeutic proteins: advances and challenges. 39:343-358

    Google Scholar 

  8. Premo PM, A. I SR, A.J.C. ISHEMIJA, medicinska revija medical review, 381 929

    Google Scholar 

  9. Lagassé HD, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty CJF (2017) Recent advances in (therapeutic protein) drug development 6

    Google Scholar 

  10. Vukušić K, Šikić S, Balen BJPb (2016) Recombinant therapeutic proteins produced in plants: towards engineering of human-type O-and N-glycosylation. 118:75-90

    Google Scholar 

  11. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399

    Article  CAS  PubMed  Google Scholar 

  12. Picanco-Castro V, Tage Biaggio R, Tadeu Cova D, Swiech KJP, Letters P (2013) Production of recombinant therapeutic proteins in human cells: current achievements and future perspectives 20:1373–1381

    CAS  Google Scholar 

  13. Schillberg S, Raven N, Spiegel H, Rasche S, Buntru MJFips (2019) Critical analysis of the commercial potential of plants for the production of recombinant proteins. 10:720

    Google Scholar 

  14. Desai PN, Shrivastava N, Padh HJBa (2010) Production of heterologous proteins in plants: strategies for optimal expression 28:427–435

    Google Scholar 

  15. Dirisala VR, Nair RR, Srirama K, Reddy PN, Rao K, Satya Sampath Kumar N, Parvatam GJApp (2017) Recombinant pharmaceutical protein production in plants: unraveling the therapeutic potential of molecular pharming. 39:1–9

    Google Scholar 

  16. Sethi L, Kumari K, Dey NJMb (2021) Engineering of plants for efficient production of therapeutics. 63:1125–1137

    Google Scholar 

  17. Kalita P, Tripathi T (2022) Methodological advances in the design of peptide-based vaccines. Drug Discov Today 27:1367–1380

    Article  CAS  PubMed  Google Scholar 

  18. Tripathi T, Dubey VK (2022) Advances in protein molecular and structural biology methods, 1st edn. Academic Press, Cambridge, MA

    Google Scholar 

  19. Grillberger L, Kreil TR, Nasr S, Reiter M (2009) Emerging trends in plasma-free manufacturing of recombinant protein therapeutics expressed in mammalian cells. Biotechnol J 4:186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Swiech K, Picanço-Castro V, Covas DT (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 84:147–153

    Article  CAS  PubMed  Google Scholar 

  21. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122

    Article  CAS  PubMed  Google Scholar 

  22. Nag N, Khan H, Tripathi T (2022) Strategies to improve the expression and solubility of recombinant proteins in E. coli. In: Tripathi T, Dubey VK (eds) Advances in protein molecular and structural biology methods. Academic Press, New York, pp 1–12

    Google Scholar 

  23. Chhetri G, Kalita P, Tripathi T (2015) An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. Methods X 2:385–391

    Google Scholar 

  24. El-Naggar NE-A, Moawad H, El-Shweihy NM, El-Ewasy SM, Elsehemy IA, Abdelwahed NAM (2019) Process development for scale-up production of a therapeutic L-asparaginase by Streptomyces brollosae NEAE-115 from shake flasks to bioreactor. Sci Rep 9:13571

    Article  PubMed  PubMed Central  Google Scholar 

  25. Baldo BA (2015) Enzymes approved for human therapy: indications, mechanisms and adverse effects. BioDrugs Clin Immunotherapeut Biopharmaceut Gene Ther 29:31–55

    Article  CAS  Google Scholar 

  26. Rattu MA, Shah N, Lee JM, Pham AQ, Marzella N (2013) Glucarpidase (voraxaze), a carboxypeptidase enzyme for methotrexate toxicity. PT 38:732–744

    Google Scholar 

  27. Landgraf W, Sandow J (2016) Recombinant human insulins – clinical efficacy and safety in diabetes therapy. Eur Endocrinol 12:12–17

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilcox G (2005) Insulin and insulin resistance. Clin Biochem Rev 26:19–39

    PubMed  PubMed Central  Google Scholar 

  29. Rix I, Nexøe-Larsen C, Bergmann NC, Lund A, Knop FK (2000) Glucagon physiology. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S, Kaltsas G, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, Morley JE, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP (Eds) Endotext, MDText.com, Inc. Copyright © 2000–2022, MDText.com, Inc., South Dartmouth (MA)

    Google Scholar 

  30. Mollerup I, Kornfelt T, Oreskov P, Tøttrup HV (1996) Industrial production of glucagon. In: Lefèbvre PJ (ed) Glucagon III. Springer, Berlin, pp 1–10

    Google Scholar 

  31. Brown RJ, Valencia A, Startzell M, Cochran E, Walter PJ, Garraffo HM, Cai H, Gharib AM, Ouwerkerk R, Courville AB, Bernstein S, Brychta RJ, Chen KY, Walter M, Auh S, Gorden P (2018) Metreleptin-mediated improvements in insulin sensitivity are independent of food intake in humans with lipodystrophy. J Clin Invest 128:3504–3516

    Article  PubMed  PubMed Central  Google Scholar 

  32. Deeks E (2019) Metreleptin in lipodystrophy: a profile of its use. Drugs Ther Perspect 35:201–208

    Article  Google Scholar 

  33. Ray MV, Van Duyne P, Bertelsen AH, Jackson-Matthews DE, Sturmer AM, Merkler DJ, Consalvo AP, Young SD, Gilligan JP, Shields PP (1993) Production of recombinant salmon calcitonin by in vitro amidation of an Escherichia coli produced precursor peptide. Biotechnology (Nature Publishing Company) 11:64–70

    CAS  Google Scholar 

  34. McLaughlin MB JI (2021) Calcitonin. [Updated 2021 Sep 28

    Google Scholar 

  35. Brixen KT, Christensen PM, Ejersted C, Langdahl BL (2004) Teriparatide (biosynthetic human parathyroid hormone 1–34): a new paradigm in the treatment of osteoporosis. Basic Clin Pharmacol Toxicol 94:260–270

    Article  CAS  PubMed  Google Scholar 

  36. Gardella TJ, Rubin D, Abou-Samra AB, Keutmann HT, Potts JT Jr, Kronenberg HM, Nussbaum SR (1990) Expression of human parathyroid hormone-(1–84) in Escherichia coli as a factor X-cleavable fusion protein. J Biol Chem 265:15854–15859

    Article  CAS  PubMed  Google Scholar 

  37. Karimi M, Behzadian F, Rouhaninejad H, Yari S (2018) A feasibility study to evaluate Bacillus subtilis as a host for producing recombinant human parathyroid hormone. Avicenna J Med Biotechnol 10:147–151

    PubMed  PubMed Central  Google Scholar 

  38. Flodh H (1986) Human growth hormone produced with recombinant DNA technology: development and production. Acta Paediatr Scand Suppl 325:1–9

    Article  CAS  PubMed  Google Scholar 

  39. Catzel D, Lalevski H, Marquis CP, Gray PP, Van Dyk D, Mahler SM (2003) Purification of recombinant human growth hormone from CHO cell culture supernatant by Gradiflow preparative electrophoresis technology. Protein Expr Purif 32:126–134

    Article  CAS  PubMed  Google Scholar 

  40. Rosenbloom AL (2008) Insulin-like growth factor-I (rhIGF-I) therapy of short stature. J Pediat Endocrinol Metab JPEM 21:301–315

    Article  CAS  Google Scholar 

  41. Ranjbari J, Babaeipour V, Vahidi H, Moghimi H, Mofid MR, Namvaran MM, Jafari S (2015) Enhanced production of insulin-like growth factor I protein in Escherichia coli by optimization of five key factors. Iran J Pharm Res 14:907–917

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Assanto GM, Riemma C, Malaspina F, Perrone S, De Luca ML, Pucciarini A, Annechini G, D'Elia GM, Martelli M, Foà R, Tiacci E, Pulsoni A (2021) The current role of interferon in hairy cell leukaemia: clinical and molecular aspects. Br J Haematol 194:78–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parekh PJ, Shiffman ML (2014) The role of interferon in the new era of hepatitis C treatments. Expert Rev Gastroenterol Hepatol 8:649–656

    Article  CAS  PubMed  Google Scholar 

  44. Aghemo A, Rumi MG, Colombo M (2010) Pegylated interferons alpha2a and alpha2b in the treatment of chronic hepatitis C. Nat Rev Gastroenterol Hepatol 7:485–494

    Article  CAS  PubMed  Google Scholar 

  45. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC (2010) Antiproliferative properties of type I and type II interferon. Pharmaceuticals (Basel) 3:994–1015

    Article  CAS  PubMed  Google Scholar 

  46. Rokx C, van der Ende ME, Verbon A, Rijnders BJA (2013) Peginterferon Alfa-2a for AIDS-associated Kaposi Sarcoma: experience with 10 patients. Clin Infect Dis 57:1497–1499

    Article  CAS  PubMed  Google Scholar 

  47. Talpaz M, Hehlmann R, Quintás-Cardama A, Mercer J, Cortes J (2013) Re-emergence of interferon-α in the treatment of chronic myeloid leukemia. Leukemia 27:803–812

    Article  CAS  PubMed  Google Scholar 

  48. Browder JF, Araujo OE, Myer NA, Flowers FP (1992) The interferons and their use in condyloma acuminata. Ann Pharmacother 26:42–45

    Article  CAS  PubMed  Google Scholar 

  49. Abdolvahab MH, Mofrad MRK, Schellekens H (2016) Chapter eight – Interferon beta: from molecular level to therapeutic effects. In: Jeon KW, Galluzzi L (eds) International review of cell and molecular biology. Academic Press, pp 343–372

    Google Scholar 

  50. Ghasemi N, Razavi S, Nikzad E (2017) Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J 19:1–10

    PubMed  Google Scholar 

  51. Pal D, Tripathy RK, Teja MS, Kumar M, Banerjee UC, Pande AH (2018) Antibiotic-free expression system for the production of human interferon-beta protein. 3 Biotech 8:36–36

    Article  PubMed  Google Scholar 

  52. Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ (2018) Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol 9:847–847

    Article  PubMed  PubMed Central  Google Scholar 

  53. Errante PR, Frazão JB, Condino-Neto A (2008) The use of interferon-gamma therapy in chronic granulomatous disease. Recent Pat Antiinfect Drug Discov 3:225–230

    Article  CAS  PubMed  Google Scholar 

  54. Tang M, Tian L, Luo G, Yu X (2018) Interferon-gamma-mediated osteoimmunology. 9

    Google Scholar 

  55. Key LL, Rodriguiz RM, Willi SM, Wright NM, Hatcher HC, Eyre DR, Cure JK, Griffin PP, Ries WL (1995) Long-term treatment of osteopetrosis with recombinant human interferon gamma. 332:1594–1599

    Google Scholar 

  56. Razaghi A, Owens L, Heimann K (2016) Review of the recombinant human interferon gamma as an immunotherapeutic: impacts of production platforms and glycosylation. J Biotechnol 240:48–60

    Article  CAS  PubMed  Google Scholar 

  57. Jiang T, Zhou C, Ren S (2016) Role of IL-2 in cancer immunotherapy. Onco Targets Ther 5:e1163462–e1163462

    Google Scholar 

  58. Srinivasan L, Harris MC, Kilpatrick LE (2017) 128 – Cytokines and inflammatory response in the fetus and neonate. In: Polin RA, Abman SH, Rowitch DH, Benitz WE, Fox WW (eds) Fetal and neonatal physiology, 5th edn. Elsevier, pp 1241–1254.e1244

    Chapter  Google Scholar 

  59. Li J, Shen L, Li Y, Zhang X, Li J, Gong J, Deng W (2007) Recombinant human interleukin-11 for treatment of chemotherapy-induced thrombocytopenia in patients with gastrointestinal cancer. Chinese-German J Clin Oncol 6:450–452

    Article  CAS  Google Scholar 

  60. Miao J, Wang J, Peng S, Tang P, Zou M, Duan J, Zhao C, Ma X (1995) Expression of human interleukin-11 cDNA in E. coli. Sci China Ser B Chem Life Sci Earth Sci 38:1202–1209

    CAS  Google Scholar 

  61. Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol (Clifton, NJ) 899:1–26

    Article  CAS  Google Scholar 

  62. Nigam PK, Nigam A (2010) Botulinum toxin. Indian J Dermatol 55:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Webb RP (2018) Engineering of botulinum neurotoxins for biomedical applications. Toxins (Basel) 10:231

    Article  PubMed  Google Scholar 

  64. O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M (2020) Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv 43:107552

    Article  PubMed  Google Scholar 

  65. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  PubMed  Google Scholar 

  66. Bailey LA, Hatton D, Field R, Dickson AJ (2012) Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol Bioeng 109:2093–2103

    Article  CAS  PubMed  Google Scholar 

  67. Lai T, Yang Y, Ng SK (2013) Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 6:579–603

    Article  CAS  PubMed  Google Scholar 

  68. Daniel LH, Aikaterini A, Simhadri VL, Katagiri NH, Wojciech J, Chava K-SJF (2017) Recent advances in (therapeutic protein) drug development. 6

    Google Scholar 

  69. Tournis S, Yavropoulou MP, Polyzos SA, Doulgeraki A (2021) Hypophosphatasia. 10:5676

    Google Scholar 

  70. Mornet E, Nunes ME (1993) Hypophosphatasia. University of Washington, Seattle, Seattle (WA)

    Google Scholar 

  71. Keating GM, Simpson D (2007) Agalsidase Beta. Drugs 67:435–456

    Article  CAS  PubMed  Google Scholar 

  72. Beck M (2009) Alglucosidase alfa: long term use in the treatment of patients with Pompe disease. Ther Clin Risk Manag 5:767–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Katzin LW, Amato AA (2008) Pompe disease: a review of the current diagnosis and treatment recommendations in the era of enzyme replacement therapy. J Clin Neuromuscul Dis 9:421–431

    Article  PubMed  Google Scholar 

  74. Tekoah Y, Tzaban S, Kizhner T, Hainrichson M, Gantman A, Golembo M, Aviezer D, Shaaltiel Y (2013) Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci Rep 33:e00071

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stone WL, Basit H, Master SR (2017) Gaucher disease

    Google Scholar 

  76. Sanford M, Lo J (2014) Elosulfase alfa: first global approval. Drugs 74

    Google Scholar 

  77. Harmatz P, Shediac R (2017) Mucopolysaccharidosis VI: pathophysiology, diagnosis and treatment. Front Biosci (Landmark edition) 22:385–406

    Article  CAS  Google Scholar 

  78. Ratner M (2008) Recombinant thrombin approved. Nat Biotechnol 26:250–250

    Article  CAS  PubMed  Google Scholar 

  79. Windyga J, Solano Trujillo MH, Hafeman AE (2014) BAX326 (RIXUBIS): a novel recombinant factor IX for the control and prevention of bleeding episodes in adults and children with hemophilia B, vol 5. Ther Adv Hematol, pp 168–180

    Google Scholar 

  80. Taran LD (1997) Factor IX of the blood coagulation system: a review. Biochem Biokhimiia 62:685–693

    CAS  Google Scholar 

  81. Farrag A, Costantini A, Manna C, Grimaldi G (2008) Recombinant HCG for triggering ovulation increases the rate of mature oocytes in women treated for ICSI. J Assist Reprod Genet 25:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fink J, Schoenfeld BJ, Hackney AC, Maekawa T, Horie S (2021) Human chorionic gonadotropin treatment: a viable option for management of secondary hypogonadism and male infertility. Expert Rev Endocrinol Metab 16:1–8

    Article  CAS  PubMed  Google Scholar 

  83. Partsinevelos GA, Antonakopoulos N, Kallianidis K, Drakakis P, Anagnostou E, Bletsa R, Loutradis D (2016) Addition of low-dose hCG to rFSH during ovarian stimulation for IVF/ICSI: is it beneficial? Clin Exp Obstet Gynecol 43:818–825

    Article  CAS  PubMed  Google Scholar 

  84. Foresta C, Selice R, Ferlin A, Garolla A (2009) Recombinant FSH in the treatment of oligozoospermia. Expert Opin Biol Ther 9:659–666

    Article  CAS  PubMed  Google Scholar 

  85. Prevost RR (1998) Recombinant follicle-stimulating hormone: new biotechnology for infertility. Pharmacotherapy 18:1001–1010

    CAS  PubMed  Google Scholar 

  86. Kaufmann R, Dunn R, Vaughn T, Hughes G, O’Brien F, Hemsey G, Thomson B, O'Dea LS (2007) Recombinant human luteinizing hormone, lutropin alfa, for the induction of follicular development and pregnancy in profoundly gonadotrophin-deficient women. Clin Endocrinol 67:563–569

    CAS  Google Scholar 

  87. Emerson CH, Torres MS (2003) Recombinant human thyroid-stimulating hormone: pharmacology, clinical applications and potential uses. BioDrugs Clin Immunotherapeut Biopharmaceut Gene Ther 17:19–38

    Article  CAS  Google Scholar 

  88. Guo N, Wang W-Q, Gong X-J, Gao L, Yang L-R, Yu W-N, Shen H-Y, Wan L-Q, Jia X-F, Wang Y-S, Zhao Y (2017) Study of recombinant human interleukin-12 for treatment of complications after radiotherapy for tumor patients. World J Clin Oncol 8:158–167

    Article  PubMed  PubMed Central  Google Scholar 

  89. Komastu T, Ireland DD, Reiss CS (1998) IL-12 and viral infections. Cytokine Growth Factor Rev 9:277–285

    Article  CAS  PubMed  Google Scholar 

  90. Vellard M (2003) The enzyme as drug: application of enzymes as pharmaceuticals. Curr Opin Biotechnol 14:444–450

    Article  CAS  PubMed  Google Scholar 

  91. Lohani P (2018) Biotechnological production of recombinant tissue plasminogen activator protein, its application. Int J Bio-Technol Res 8:9–20

    Article  Google Scholar 

  92. Sidawy AN (2018) Rutherford’s vascular surgery and endovascular therapy. Elsevier [Place of publication not identified]

    Google Scholar 

  93. Mohammadi E, Seyedhosseini-Ghaheh H, Mahnam K, Jahanian-Najafabadi A, Sadeghi HMM (2019) Reteplase: structure, function, and production. Adv Biomed Res 8:19–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Whiteman DA, Kimura A (2017) Development of idursulfase therapy for mucopolysaccharidosis type II (Hunter syndrome): the past, the present and the future. Drug Des Devel Ther 11:2467–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Castillo B, Dasgupta A, Klein K, Tint H, Wahed A (2018) Chapter 11 - Pharmacologic agents in transfusion medicine. In: Castillo B, Dasgupta A, Klein K, Tint H, Wahed A (eds) Transfusion medicine for pathologists. Elsevier, pp 177–193

    Chapter  Google Scholar 

  96. Dutta TK, Verma SP (2014) Rational use of recombinant factor VIIa in clinical practice. Indian J Hematol Blood Transfus 30:85–90

    Article  CAS  PubMed  Google Scholar 

  97. Boedeker BG (2001) Production processes of licensed recombinant factor VIII preparations. Semin Thromb Hemost 27:385–394

    Article  CAS  PubMed  Google Scholar 

  98. Shahid N, Daniell H (2016) Plant-based oral vaccines against zoonotic and non-zoonotic diseases. Plant Biotechnol J 14:2079–2099

    Article  PubMed  PubMed Central  Google Scholar 

  99. Daniell H, Lin C-S, Yu M, Chang W-J (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    Article  PubMed  PubMed Central  Google Scholar 

  100. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  CAS  PubMed  Google Scholar 

  101. De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563

    Article  PubMed  Google Scholar 

  102. Xu J, Towler M, Weathers PJ (2018) Platforms for plant-based protein production. Bioprocess Plant In Vitro Syst:509–548

    Google Scholar 

  103. Budzianowski J (2014) Tobacco – a producer of recombinant interferons. Przeglad lekarski 71:639–643

    PubMed  Google Scholar 

  104. Gomes C, Oliveira F, Vieira S, Duque S (2019) Prospects for the production of recombinant therapeutic proteins and peptides in plants: special focus on Angiotensin I-Converting Enzyme Inhibitory (ACEI) peptides

    Google Scholar 

  105. Grabowski G, Golembo M, Shaaltiel Y (2014) Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 112

    Google Scholar 

  106. Tripathi NK, Shrivastava A (2019) Recent developments in bioprocessing of recombinant proteins: expression hosts and process development 7

    Google Scholar 

  107. Riedl M (2015) Recombinant human C1 esterase inhibitor in the management of hereditary angioedema. Clin Drug Investig 35:407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Houdebine L-M (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121

    Article  PubMed  Google Scholar 

  109. Hunter P (2019) The prospects for recombinant proteins from transgenic animals. 20:e48757

    Google Scholar 

  110. Shirley M (2015) Sebelipase alfa: first global approval. Drugs 75:1935–1940

    Article  CAS  PubMed  Google Scholar 

  111. Kunze G, Kang HA, Gellissen G (2009) Hansenula polymorpha (Pichia angusta): biology and applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 47–64

    Chapter  Google Scholar 

  112. Waller DG, Sampson AP (2018) 31 – Hyperuricaemia and gout. In: Waller DG, Sampson AP (eds) Medical pharmacology and therapeutics, 5th edn. Elsevier, pp 385–389

    Chapter  Google Scholar 

  113. Korte W (2014) Catridecacog: a breakthrough in the treatment of congenital factor XIII A-subunit deficiency? J Blood Med 5:107–113

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvez Singh Slathia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slathia, P.S., Sagrika, Sharma, E., Khan, I.A., Thakur, R.S., Sharma, P. (2023). Recombinant Production of Therapeutic Proteins. In: Singh, D.B., Tripathi, T. (eds) Protein-based Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-19-8249-1_4

Download citation

Publish with us

Policies and ethics