Skip to main content

Epigenetics for Crop Improvement: Challenges and Opportunities with Emphasis on Wheat

  • Chapter
  • First Online:
Smart Plant Breeding for Field Crops in Post-genomics Era
  • 403 Accesses

Abstract

Rice, wheat and maize are the three major cereal crops that are imperative to food security and nutrition. Out of the three cereals, wheat has the most complex and largest genome (~16 GB) and is a staple food for most people worldwide. Therefore, continuous efforts are being made to improve the production of important cereals, including wheat. Breeding these cereals for major biotic and abiotic stresses and nutritional quality has been an important area of research. Further, with the advent of next-generation sequencing technology, a tremendous wealth of genomic resources is now available, paving the way for modern genomic approaches for crop improvement. Recently, epigenetics is also becoming popular as an important area of research, and some efforts have been made in this direction to understand what part of the cereals’ genome is actually regulated through epigenetic factors, which mainly include DNA methylation, histone modifications, and noncoding RNAs (including microRNAs or miRNAs and long noncoding RNAs or lncRNAs). The available literature, to some extent, suggests that epigenetics is a highly complex mechanism. Therefore, more efforts are certainly needed in this direction so that it may prove helpful in the breeding of cereals for resistance against important biotic and abiotic stresses. Some attempts have also been made to identify important epialleles in rice; however, they have not been used in breeding for the development of stress-tolerant varieties using epigenetic markers. The present chapter provides an overview of the research conducted worldwide to understand the epigenetic component involved during different environmental stresses in important cereals, with special emphasis on wheat. Further, it also highlights different challenges and future strategies that may help in development of cereal genotypes that are resistant to different environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atighi MR, Verstraeten B, De Meyer T, Kyndt T (2021) Genome-wide shifts in histone modifications at early stage of rice infection with Meloidogyne graminicola. Mol Plant Pathol 22(4):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atighi MR, Verstraeten B, De Meyer T, Kyndt T (2020) Genome‐wide DNA hypomethylation shapes nematode pattern‐triggered immunity in plants. New Phytologist 227(2):545–558. https://doi.org/10.1111/nph.16532

    Article  CAS  PubMed  Google Scholar 

  • Bartels A, Han Q, Nair P et al (2018) Dynamic DNA methylation in plant growth and development. Int J Mol Sci 19(7):2144

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker C, Weigel D (2012) Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol 15:562–567

    Article  CAS  PubMed  Google Scholar 

  • Blevins T, Wang J, Pflieger D, Pontvianne F, Pikaard CS (2017) Hybrid incompatibility caused by an epiallele. Proc Natl Acad Sci U S A 114:3702–3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Sakai H, Jack T et al (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development (Cambridge, England) 114(3):599–615

    Article  CAS  PubMed  Google Scholar 

  • Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41:872–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Can SN, Nunn A, Galanti D, Langenberger D et al (2021) The EpiDiverse plant epigenome-wide association studies (EWAS) pipeline. Epigenomes 5:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona A, Day FR, Perry J et al (2019) Epigenome-wide association study of incident type 2 diabetes in a British population: EPIC-Norfolk study. Diabetes 68:2315–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Cui L, Chen Y et al (2017) Transcriptional responses of wheat and the cereal cyst nematode Heterodera avenae during their early contact stage. Sci Rep 7:14471

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang YH, Paul KC, Bronstein JM, Bordelon Y, Horvath S, Ritz B (2017) Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Med 9:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C et al (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  CAS  PubMed  Google Scholar 

  • Cocciolone SM, Chopra S, Flint-Garcia SA, McMullen MD, Peterson T (2001) Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated. Plant J 27:467–478

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • Dinkar V, Jha SK, Mallick N, Niranjana M, Agarwal P, Sharma JB, Vinod. (2020) Molecular mapping of a new recessive wheat leaf rust resistance gene originating from Triticum spelta. Sci Rep 10(1):22113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan H, Li J, Zhu Y et al (2020) Responsive changes of DNA methylation in wheat (Triticum aestivum) under water deficit. Sci Rep 10:7938

    Article  PubMed  PubMed Central  Google Scholar 

  • Durand S, Bouche N, Perez SE, Loudet O, Camilleri C (2012) Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr Biol 22:326–331

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci U S A 100(25):15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Bartolomé J (2020) DNA methylation in plants: mechanisms and tools for targeted manipulation. New Phytol 227(1):38–44

    Article  PubMed  Google Scholar 

  • Gallusci P, Dai Z, Génard M, Gauffretau A et al (2017) Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22(7):610–623

    Article  CAS  PubMed  Google Scholar 

  • Gautam T, Amardeep, Saripalli G et al (2021) Introgression of a drought insensitive grain yield QTL for improvement of four Indian bread wheat cultivars using marker assisted breeding without background selection. J Plant Biochem Biotechnol 30:172–183

    Article  CAS  Google Scholar 

  • Genereux DP, Johnson WC, Burden AF, Stöger R, Laird CD (2008) Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res 36(22):e150

    Article  PubMed  PubMed Central  Google Scholar 

  • Guarino F, Cicatelli A, Castiglione S et al (2022) An epigenetic alphabet of crop adaptation to climate change. Front Genet 13:818727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL (2016) Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol 25:1665–1680

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Wang D, Lisch D (2021) RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genet 17(6):e1009326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkess A (2018) Handling the heat: methylome variation underlying heat tolerance in cotton. Plant Cell 30(9):1947–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Wu W, Zinta G et al (2018) A naturally occurring epiallele associates with leaf senescence and local climate adaptation in Arabidopsis accessions. Nat Commun 9(1):460

    Article  PubMed  PubMed Central  Google Scholar 

  • He S, Zhang Y, Wang J et al (2022) H3K4me2, H4K5ac and DNA methylation function in short- and long-term heat stress responses through affecting the expression of the stress-related genes in G. hirsutum. Environ Exp Bot 194:104699

    Article  CAS  Google Scholar 

  • Helman D, Bonfil DJ (2022) Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield. Sci Rep 12(1):7921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollick JB, Patterson GI, Coe EH, Cone KC, Chandler VL (1995) Allelic interactions heritably influence the activity of a metastable maize pl allele. Genetics 141:709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  • Jacobsen SE, Sakai H, Finnegan EJ, Cao X, Meyerowitz EM (2000) Ectopic hypermethylation of flower specific genes in Arabidopsis. Curr Biol 24:179–186

    Article  Google Scholar 

  • Jain N, Batra R, Saripalli G et al (2021) Methylome changes during Lr48-mediated APR for leaf rust in wheat (Triticum aestivum L.). Physiol Mol Plant Pathol 116:101726

    Article  CAS  Google Scholar 

  • Kakoulidou I, Avramidou EV, Baránek M et al (2021) Epigenetics for crop improvement in times of global change. Biology (Basel) 10(8):766

    CAS  PubMed  Google Scholar 

  • Kaur A, Grewal A, Sharma P (2018) Comparative analysis of DNA methylation changes in two contrasting wheat genotypes under water deficit. Biol Plant 62:471–478

    Article  CAS  Google Scholar 

  • Konkin D, Hsueh YC, Kirzinger M et al (2022) Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL. BMC Genomics 23(1):228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Gantasala NP, Roychowdhury T et al (2014) De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. PLoS One 9(5):e96311

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Rai KM, Pirseyedi S et al (2020) Epigenetic regulation of gene expression improves Fusarium head blight resistance in durum wheat. Sci Rep 10(1):17610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Sharma S, Sharma R et al (2021) Genome-wide association study in hexaploid wheat identifies novel genomic regions associated with resistance to root lesion nematode (Pratylenchus thornei). Sci Rep 11:3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonetti P, Molinari S (2020) Epigenetic and metabolic changes in root-knot nematode-plant interactions. Int J Mol Sci 21(20):7759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhao J, Rose AB, Schmidt R, Last RL (1995) Arabidopsis phosphoribosylanthranilate isomerase: molecular genetic analysis of triplicate tryptophan pathway genes. Plant Cell 7(4):447–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Zou D, Li Z et al (2019) EWAS Atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res 47:D983–D988

    Article  CAS  PubMed  Google Scholar 

  • Li S, He X, Gao Y et al (2021) Histone acetylation changes in plant response to drought stress. Genes 12(9):1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Cai H, Liu K et al (2022) DNA methylation alterations and their association with high temperature tolerance in rice anthesis. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10586-5

  • Liang D, Zhang D, Wu H, Huang C, Shuai P et al (2014) Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15:S9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin G, Chen H, Tian B et al (2022) Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii. Nat Commun 13:3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan X, Liu S, Ke S, Dai H, Xie XM, Hsieh TF, Zhang XQ (2019) Epigenetic modification of ESP, encoding a putative long noncoding RNA, affects panicle architecture in rice. Rice 12:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning K, Tör M, Poole M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Troadec C, Boualem A et al (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 supplement. Available at https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf

  • McIntosh RA, Dubcovsky J, Rogers WJ, Xia XC, Raupp WJ (2020) Catalogue of gene symbols for wheat: 2020 supplement. Ann Wheat Newslett 66

    Google Scholar 

  • Miura K, Agetsuma M, Kitano H et al (2009) A metastable dwarf1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci U S A 106:11218–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Ikeda M, Matsubara A et al (2010) Osspl14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549

    Article  CAS  PubMed  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47(12):1494–1498. https://doi.org/10.1038/ng.3439

    Article  CAS  PubMed  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson GI, Thorpe CJ, Chandler VL (1993) Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene. Genetics 135:881–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikaard CS, Mittelsten Scheid O (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6(12):a019315

    Article  PubMed  PubMed Central  Google Scholar 

  • Pilu R, Panzeri D, Cassani E, Cerino Badone F, Landoni M, Nielsen EA (2009) Paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity 102:236–245

    Article  CAS  PubMed  Google Scholar 

  • Pu H, Shan S, Wang Z et al (2020) Dynamic changes of DNA methylation induced by heat treatment were involved in ethylene signal transmission and delayed the postharvest ripening of tomato fruit. J Agric Food Chem 68:8976–8986

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Hu W, Liao J, Zhang J, Ren Q (2019) The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochem Biophys Res Commun 512(4):742–749

    Article  CAS  PubMed  Google Scholar 

  • Qiao F, Kong LA, Peng H et al (2019) Transcriptional profiling of wheat (Triticum aestivum L.) during a compatible interaction with the cereal cyst nematode Heterodera avenae. Sci Rep 9:2184

    Article  PubMed  PubMed Central  Google Scholar 

  • Quadrana L, Almeida J, Asís R et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027

    Article  CAS  PubMed  Google Scholar 

  • Qui L, Wang H, Li Y et al (2020) Fine mapping of the leaf rust resistance gene LrLc10(Lr13) and validation of its co-segregation markers. Front Plant Sci 11:470

    Article  Google Scholar 

  • Rai N, Bellundagi A, Kumar PKC et al (2018) Marker-assisted backcross breeding for improvement of drought tolerance in bread wheat (Triticum aestivum L. em Thell). Plant Breed 137(4):514–526

    Article  CAS  Google Scholar 

  • Rambani A, Rice JH, Liu J et al (2015) The methylome of soybean roots during the compatible interaction with the soybean cyst nematode. Plant Physiol 168(4):1364–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran S, Ragupathy R, Edwards T et al (2019) MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 20:488

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-García L, Cabezas JA, de María N, Cervera MT (2010) Isoschizomers and amplified fragment length polymorphism for the detection of specific cytosine methylation changes. Methods Mol Biol 631:63–74

    Article  PubMed  Google Scholar 

  • Saripalli G, Sharma C, Gautam T et al (2020a) Complex relationship between DNA methylation and gene expression due to Lr28 in wheat-leaf rust pathosystem. Mol Biol Rep 47(2):1339–1360

    Article  CAS  PubMed  Google Scholar 

  • Saripalli G, Singh K, Gautam T et al (2020b) Genome-wide analysis of H3K4me3 and H3K27me3 modifications due to Lr28 for leaf rust resistance in bread wheat (Triticum aestivum). Plant Mol Biol 104(1–2):113–136

    Article  CAS  PubMed  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439

    Article  PubMed  Google Scholar 

  • Saze H, Kakutani T (2007) Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26(15):3641–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma C, Saripalli G, Kumar S (2018) A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. Funct Plant Biol 45(10):1046–1064

    Article  CAS  PubMed  Google Scholar 

  • Shayevitch R, Askayo D, Keydar I, Ast G (2018) The importance of DNA methylation of exons on alternative splicing. RNA 24(10):1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiba H, Kakizaki T, Iwano M et al (2006) Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nat Genet 38:297–299

    Article  CAS  PubMed  Google Scholar 

  • Silveira AB, Trontin C, Cortijo S, Barau J et al (2013) Extensive natural epigenetic variation at a de novo originated gene. PLoS Genet 9(4):e1003437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Miller G, Faigenboim A, Lieberman-Lazarovich M (2021) The tomato ddm1b mutant shows decreased sensitivity to heat stress accompanied by transcriptional alterations. Genes 12(9):1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Saripalli G, Gautam T, Prasad P, Jain N, Balyan HS, Gupta PK (2022) BS-Seq reveals major role of differential CHH methylation during leaf rust resistance in wheat (Triticum aestivum L.). Mol Genet Genomics 297(3):731–749

    Article  CAS  PubMed  Google Scholar 

  • Smith RG, Pishva E, Shireby G et al (2021) A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex. Nat Commun 12:3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soppe WJJ, Jacobsen SE, Alonso-Blanco C et al (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  CAS  PubMed  Google Scholar 

  • Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18(9):563–575

    Article  CAS  PubMed  Google Scholar 

  • Stokes TL, Kunkel BN, Richards EJ (2002) Epigenetic variation in Arabidopsis disease resistance. Genes Dev 16(2):171–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Guo Z, Gao L, Zhao G, Zhang W, Zhou R et al (2014) DNA methylation pattern of photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytol 204:682–692

    Article  CAS  PubMed  Google Scholar 

  • Varotto S, Tani E, Abraham E et al (2020) Epigenetics: possible applications in climate-smart crop breeding. J Exp Bot 71(17):5223–5236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Quin Q, Sun F, Wang Y, Xu D, Li Z et al (2016) Genome-wide differences in DNA methylation changes in two contrasting rice genotypes in response to drought conditions. Front Plant Sci 7:1675

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li Q, Liu Z et al (2018) Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight. PLoS One 13(11):e0207036

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Ren Y, Li J, Wang Z, Xin Z, Lin T (2019) Knock-down the expression of TaH2B-7D using virus-induced gene silencing reduces wheat drought tolerance. Biol Res 52(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Song X, Wei L, Tang S, Sun J, Hu P, Cao X (2017) An epiallele of rice AK1 affects photosynthetic capacity. J Integr Plant Biol 59(3):158–163

    Article  CAS  PubMed  Google Scholar 

  • Whitehead AG (1998) Plant nematode control. CAB International, Wallingford

    Google Scholar 

  • Wu F, Zhou Y, Shen Y, Sun Z, Li L, Li T (2022) Linking multi-omics to wheat resistance types to fusarium head blight to reveal the underlying mechanisms. Int J Mol Sci 23(4):2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Brewer A, Bell JT (2021) DNA methylation signatures of incident coronary heart disease: findings from epigenome-wide association studies. Clin Epigenetics 13:186. https://doi.org/10.1186/s13148-021-01175-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Li Y, Cheng Z, Xia G, Wang M (2016) A wheat histone variant gene TaH2A.7 enhances drought tolerance and promotes stomatal closure in Arabidopsis. Plant Cell Rep 35(9):1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cheng Z, Qin R et al (2012) Identification and characterization of an epi-allele of fie1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell 24:4407–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Sun J, Cao X, Song X (2015) Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol 169:2118–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wei W, Zuansun X et al (2021) Fine mapping of the leaf rust resistance gene Lr65 in spelt Wheat ‘Altgold’. Front Plant Sci 12:666921

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Chen L, Xia H et al (2017) Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep 7:39843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Putker V, Goverse A (2021) Molecular and cellular mechanisms involved in host-specific resistance to cyst nematodes in crops. Front Plant Sci 12:641582

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Saripalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saripalli, G., Gahlaut, V., Gautam, T., Sharma, H. (2023). Epigenetics for Crop Improvement: Challenges and Opportunities with Emphasis on Wheat. In: Sharma, D., Singh, S., Sharma, S.K., Singh, R. (eds) Smart Plant Breeding for Field Crops in Post-genomics Era . Springer, Singapore. https://doi.org/10.1007/978-981-19-8218-7_13

Download citation

Publish with us

Policies and ethics