Skip to main content

A 1/2 Approximation Algorithm for Energy-Constrained Geometric Coverage Problem

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1693))

Included in the following conference series:

  • 240 Accesses

Abstract

This paper studies the energy-constrained geometric coverage problem, which is to find an energy allocation that maximizes sensor coverage benefits while satisfying budget constraints. In this paper, we give a \(Greedy+\) algorithm with 1/2-approximation. The time complexity is \(O(m^2n^2)\). This algorithm is an improvement of the greedy algorithm. In each iteration of the greedy algorithm, the single element with the largest revenue that satisfy budget constraints is added. The solution with the largest revenue as the output of the algorithm. We show that the approximation ratio of the algorithm is tight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Q., Li, W., Zhang, X., et al.: A local-ratio-based power control approach for capacitated access points in mobile edge computing (2022) https://doi.org/10.1145/3546000.3546027

  2. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_42

    Chapter  Google Scholar 

  3. Alt, H., Arkin, E.M., Brönnimann, H., et al.: Minimum-cost coverage of point sets by disks. In: Amenta, N., Cheong, O. (eds.) Symposium on Computational Geometry, pp. 449–458. ACM, New York (2006)

    Google Scholar 

  4. Li, M., Ran, Y., Zhang, Z.: A primal-dual algorithm for the minimum power partial cover problem. J. Comb. Optim. 39, 725–746 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, H., Deng, B., Li, W., Liu, X.: A note on the minimum power partial cover problem on the plane. J. Comb. Optim. 44(2), 970–978 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Abu-Affash, A.K., Carmi, P., Katz, M.J., Morgenstern, G.: Multi cover of a polygon minimizing the sum of areas. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp. 134–145. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19094-0_15

    Chapter  Google Scholar 

  7. Ran, Y., Huang, X., Zhang, Z., et al.: Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks. J. Global Optim. 80, 661–677 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, X., Li, W., Xie, R.: A primal-dual approximation algorithm for the \(k\)-prize-collecting minimum power cover problem. Optim. Lett. 1–13 (2021). https://doi.org/10.1007/s11590-021-01831-z

  9. Liu, X., Li, W., Dai, H.: Approximation algorithms for the minimum power cover problem with submodular/linear penalties. Theoret. Comput. Sci. 923, 256–270 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, X., Dai, H., Li, S., Li, W.: \(k\)-prize-collecting minimum power cover problem with submodular penalties on a plane. Chin. Sci.: Inf. Sci. 52(6), 947–959 (2022)

    Google Scholar 

  11. Li, W., Liu, X., Cai, X., et al.: Approximation algorithm for the energy-aware profit maximizing problem in heterogeneous computing systems. J. Parallel Distrib. Comput. 124, 70–77 (2019)

    Article  Google Scholar 

  12. Lan, H.: Energy-constrained geometric coverage problem. In: Ni, Q., Wu, W. (eds.) AAIM 2022. LNCS, vol. 13513, pp. 268–277. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16081-3_23

    Chapter  Google Scholar 

  13. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Comput. Netw. 47, 489–501 (2005)

    Article  MATH  Google Scholar 

  14. de Rezende, P.J., Miyazawa, F.K., Sasaki, A.T.: A PTAS for the disk cover problem of geometric objects. Oper. Res. Lett. 41(5), 552–555 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Logan, P., Haitao, W.: Algorithms for the line-constrained disk coverage and related problems. Comput. Geom. 105, 101883 (2022)

    Google Scholar 

  16. Wolsey, L.: Maximising real-valued submodular functions: primal and dual heuristics for location problems. Math. Oper. Res. 7(3), 410–425 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70(1), 39–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tang, J., Tang, X., Lim, A., Han, K., Li, C., Yuan, J.: Revisiting modified greedy algorithm for monotone submodular maximization with a knapsack constraint. Proc. ACM Meas. Anal. Comput. Syst. 5(1), 1–22 (2021)

    Article  Google Scholar 

  19. Kulik, A., Schwartz, R., Shachnai, H.: A refined analysis of submodular Greedy. Oper. Res. Lett. 49, 507–514 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feldman, M., Nutov, Z., Shoham, E.: Practical budgeted submodular maximization (2020). https://doi.org/10.48550/arXiv.2007.04937

  21. Yaroslavtsev, G., Zhou, S., Avdiukhin, D.: “Bring Your Own Greedy”+ Max: near-optimal 1/2-approximations for submodular knapsack. In: Chiappa, S., Calandra, R. (eds.) International Conference on Artificial Intelligence and Statistics, pp. 3263–3274. Palermo, Sicily (2020)

    Google Scholar 

  22. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints. In: Schuurmans, D, Wellman, M. P., (eds.) Proceedings of the 30th AAAI Conference on Artificial Intelligence, Lake Tahoe, Nevada, pp. 819–826 (2016)

    Google Scholar 

  23. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27821-4_7

    Chapter  MATH  Google Scholar 

  24. Farbstein, B., Levin, A.: Maximum coverage problem with group budget constraints. J. Comb. Optim. 34, 725–735 (2017). https://doi.org/10.1007/s10878-016-0102-0

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, L., Li, M., Xu, D.: Approximation algorithms for maximum coverage with group budget constraints. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 362–376. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lan, H. (2022). A 1/2 Approximation Algorithm for Energy-Constrained Geometric Coverage Problem. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics