Skip to main content

A Deep Learning Model for Early Prediction of Pneumonia Using VGG19 and Neural Networks

  • Conference paper
  • First Online:
Mobile Radio Communications and 5G Networks

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 588))

Abstract

Pneumonia is a disease that can be caused by bacteria, viruses, and fungi. According to WHO, pneumonia is responsible for 22% of all deaths of children under the age of 1–5 years which is one of the main causes of increased mortality rate. Congestion, gray hepatization, red hepatization, and resolution are the stages of this disease. If the disease is not detected in time, it can progress to a fatal stage. The chest X-ray image is used to diagnose pneumonia, but it requires the presence of experienced radiologists. Pneumonia, COVID-19, cancer, and various other diseases can be identified using X-ray images. If the disease is incorrectly identified, severe difficulties may arise. A deep learning-based model called VGG19 is used to address this issue, which classifies pneumonia from normal lungs. A chest X-ray dataset containing 5856 images was used in this study to classify pneumonia from normal lungs. The outcomes have been demonstrated as accuracy, precision, recall, F1-score, and receiver operating characteristics with the values of 93%, 0.931, 0.93, 0.931, and 0.973, respectively. Furthermore, for validating the proposed model, the performance parameters are compared to the existing work, which results that the proposed model outperforms the other models. In future, this work could be used in hospitals and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alqudah AM, Qazan S, Masad IS (2021) Artificial intelligence framework for efficient detection and classification of pneumonia using chest radiography images. J Med Biol Eng 41(5):599–609

    Google Scholar 

  2. Stokes K, Castaldo R, Federici C, Pagliara S, Maccaro A, Cappuccio F, Pecchia L (2022) The use of artificial intelligence systems in diagnosis of pneumonia via signs and symptoms: a systematic review. Biomed Signal Process Control 72:103325

    Article  Google Scholar 

  3. Jaiswal AK, Tiwari P, Kumar S, Gupta D, Khanna A, Rodrigues JJ (2019) Identifying pneumonia in chest X-rays: a deep learning approach. Measurement 145:511–518

    Article  Google Scholar 

  4. Sharma S, Guleria K (2022) Deep learning models for image classification: comparison and applications. In: 2nd international conference on advance computing and innovative technologies in engineering (ICACITE), pp 1733–1738

    Google Scholar 

  5. Gulati S, Guleria K, Goyal N (2022) Classification and detection of coronary heart disease using machine learning. In: 2nd international conference on advance computing and innovative technologies in engineering (ICACITE), pp 1728–1732

    Google Scholar 

  6. Sharma A, Guleria K, Goyal N (2021) Prediction of diabetes disease using machine learning model. In: International conference on communication, computing and electronics systems. Springer, Singapore, pp 683–692ι

    Google Scholar 

  7. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ng AY (2017) Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225

  8. Sirazitdinov I, Kholiavchenko M, Mustafaev T, Yixuan Y, Kuleev R, Ibragimov B (2019) Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput Electr Eng 78:388–399

    Article  Google Scholar 

  9. Rahimzadeh M, Attar A (2020) A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inform Med Unlocked 19:100360

    Google Scholar 

  10. Ieracitano C, Mammone N, Versaci M, Varone G, Ali AR, Armentano A, Morabito FC (2022) A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images. Neurocomputing 481:202–215

    Article  Google Scholar 

  11. Kundu R, Das R, Geem ZW, Han GT, Sarkar R (2021) Pneumonia detection in chest X-ray images using an ensemble of deep learning models. PLoS ONE 16(9):e0256630

    Article  Google Scholar 

  12. Jain PK, Sharma N, Kalra MK, Viskovic K, Saba L, Suri JS (2022) Four types of multiclass frameworks for pneumonia classification and its validation in X-ray scans using seven types of deep learning artificial intelligence models. Diagnostics 12(3):652

    Article  Google Scholar 

  13. Ahmad J, Saudagar AKJ, Malik KM, Ahmad W, Khan MB, Hasanat MHA, Sajjad M (2022) Disease progression detection via deep sequence learning of successive radiographic scans. Int J Environ Res 19(1):480

    Google Scholar 

  14. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK (2018) Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 15(11):e1002683

    Google Scholar 

  15. Zhang F (2021) Application of machine learning in CT images and X-rays of COVID-19 pneumonia. Medicine 100(36)

    Google Scholar 

  16. Kaggle. https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. Last accessed 21 July 2022

  17. Bhattacharyya A, Bhaik D, Kumar S, Thakur P, Sharma R, Pachori RB (2022) A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images. Biomed Signal Process Control 71:103182

    Article  Google Scholar 

  18. Gour M, Jain S (2022) Uncertainty-aware convolutional neural network for COVID-19 X-ray images classification. Comput Biol Med 140:105047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalpna Guleria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, S., Guleria, K. (2023). A Deep Learning Model for Early Prediction of Pneumonia Using VGG19 and Neural Networks. In: Marriwala, N., Tripathi, C., Jain, S., Kumar, D. (eds) Mobile Radio Communications and 5G Networks. Lecture Notes in Networks and Systems, vol 588. Springer, Singapore. https://doi.org/10.1007/978-981-19-7982-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7982-8_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7981-1

  • Online ISBN: 978-981-19-7982-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics