Skip to main content

Semi-supervised Semantic Segmentation of Effusion Cytology Images Using Adversarial Training

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Abstract

In pleural effusion, an excessive amount of fluid gets accumulated inside the pleural cavity along with signs of inflammation, infections, malignancies, etc. Usually, a manual cytological test is performed to detect and diagnose pleural effusion. The deep learning solutions for effusion cytology include a fully supervised model trained on effusion cytology images with the help of output maps. The low-resolution cytology images are harder to label and require the supervision of an expert, the labeling process time-consuming and expensive. Therefore, we have tried to use some portion of data without any labels for training our models using the proposed semi-supervised training methodology. In this paper, we proposed an adversarial network-based semi-supervised image segmentation approach to automate effusion cytology. The semi-supervised methodology with U-Net as the generator shows nearly 12% of absolute improvement in the f-score of benign class, 8% improvement in the f-score of malignant class, and 5% improvement in mIoU score as compared to a fully supervised U-Net model. With ResUNet++ as a generator, a similar improvement in the f-score of 1% for benign class, 8% for the malignant class, and 1% in the mIoU score is observed as compared to a fully supervised ResUNet++ model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehya, H.: Effusion cytology. Clin. Lab. Med. 11, 443–467 (1991)

    Article  Google Scholar 

  2. Lepus, C., Vivero, M.: Updates in effusion cytology. Surg. Pathol. Clin. 11, 523–544 (2018)

    Article  Google Scholar 

  3. Aboobacker, S., Vijayasenan, D., David, S., Suresh, P., Sreeram, S.: A deep learning model for the automatic detection of malignancy in effusion cytology. In: 2020 IEEE International Conference On Signal Processing, Communications And Computing (ICSPCC), pp. 1–5 (2020)

    Google Scholar 

  4. Win, K., Choomchuay, S., Hamamoto, K., Raveesunthornkiat, M.: Artificial neural network based nuclei segmentation on cytology pleural effusion images. In: 2017 International Conference On Intelligent Informatics And Biomedical Sciences (ICIIBMS), pp. 245–249 (2017)

    Google Scholar 

  5. Win, K., Choomchuay, S., Hamamoto, K., Raveesunthornkiat, M.: Comparative study on automated cell nuclei segmentation methods for cytology pleural effusion images. J. Healthc. Eng. 2018 (2018)

    Google Scholar 

  6. Seibold, C., ReiĂź, S., Kleesiek, J., Stiefelhagen, R.: Reference-guided Pseudo-Label Generation for Medical Semantic Segmentation (2021). ArXiv Preprint ArXiv:2112.00735

  7. Xie, Q., Luong, M., Hovy, E., Le, Q.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  8. Laine, S., Aila, T.: Temporal Ensembling for Semi-supervised Learning (2016). ArXiv Preprint ArXiv:1610.02242

  9. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. Adv. Neural Inform. Proces. Syst. 30 (2017)

    Google Scholar 

  10. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intel. 41, 1979–1993 (2018)

    Article  Google Scholar 

  11. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C., Cubuk, E., Kurakin, A., Li, C.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural Inform. Proces. Syst. 33, 596–608 (2020)

    Google Scholar 

  12. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. Adv. Neural Inform. Proces. Syst. 32 (2019)

    Google Scholar 

  13. Cui, W., Akrami, H., Joshi, A., Leahy, R.: Semi-supervised Learning Using Robust Loss (2022). ArXiv Preprint ArXiv:2203.01524

  14. Hung, W., Tsai, Y., Liou, Y., Lin, Y., Yang, M.: Adversarial learning for semi-supervised semantic segmentation. In: Proceedings of the British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  15. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intel. 40, 834–848 (2017)

    Article  Google Scholar 

  16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inform. Proces. Syst. 27 (2014)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  18. Jha, D., Smedsrud, P., Riegler, M., Johansen, D., De Lange, T., Halvorsen, P., Johansen, H.: Resunet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu Vijayasenan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajpurohit, M., Aboobacker, S., Vijayasenan, D., Sumam David, S., Suresh, P.K., Sreeram, S. (2023). Semi-supervised Semantic Segmentation of Effusion Cytology Images Using Adversarial Training. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_43

Download citation

Publish with us

Policies and ethics