Skip to main content

Diagnosis of COVID-19 Using Deep Learning Augmented with Contour Detection on X-rays

  • Conference paper
  • First Online:
Computer Vision and Machine Intelligence

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 586))

  • 457 Accesses

Abstract

The WHO has declared the infectious respiratory disease COVID-19 caused due to novel coronavirus an international pandemic on March 11, 2020. The raging pandemic created a colossal loss of human life and created economic and social disruptions for millions worldwide. As the illness is new, the medical system and infrastructure are presently inadequate to counter the condition. The situation demands innovating creatively and instituting countervailing measures to circumvent the crisis. Artificial intelligence and machine learning need to be the engine for leading the technological transformation across the healthcare industry amidst the pandemic. As human resources have stretched, automation is the key to tiding over the situation. Early computer-aided automated detection of the disease can provide the necessary edge in combating this deadly virus. Though the availability of a dataset with sufficient ground truth remains a challenge, a convolution neural network (CNN)-based approach can play a dominant role as a classifier solution for the chest X-rays. This paper explores the possibility of using the convolutional neural networks to classify the chest X-rays on the preprocessed images using thresholding followed by morphological processing for edge detection and contour detection. The accuracy of a stand-alone CNN network increases remarkably when preprocessed images are used as input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahsan, Md.M., Based, J.H., Kowalski, M., et al.: COVID-19 detection from chest X-ray images using feature fusion and deep learning. Sensors 21(4), 1480 (2021)

    Article  Google Scholar 

  2. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE (2017)

    Google Scholar 

  3. Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., Wang, M.: Presumed asymptomatic carrier transmission of COVID-19. Jama 323(14), 1406–1407 (2020)

    Article  Google Scholar 

  4. Bishop, C.M.: Neural networks and their applications. Rev. Sci. Instrum. 65(6), 1803–1832 (1994)

    Google Scholar 

  5. Cabello, F., León, J., Iano, Y., Arthur, R.: Implementation of a fixed-point 2D Gaussian filter for image processing based on FPGA. In: 2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 28–33. IEEE (2015)

    Google Scholar 

  6. Chithra, A.S., Renjen Roy, R.U.: Otsu’s adaptive thresholding based segmentation for detection of lung nodules in CT image. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1303–1307. IEEE (2018)

    Google Scholar 

  7. Dong, Y., Pan, Y., Zhang, J., Xu, W.: Learning to read chest X-ray images from 16000+ examples using CNN. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 51–57. IEEE (2017)

    Google Scholar 

  8. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016)

  9. Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., Ji, W.: Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 296(2), E115–E117 (2020)

    Article  Google Scholar 

  10. Haque, K.F., Haque, F.F., Gandy, L., Abdelgawad, A.: Automatic detection of COVID-19 from chest X-ray images with convolutional neural networks. In: 2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE), pp. 125–130. IEEE (2020)

    Google Scholar 

  11. Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1338–1359 (1997)

    Google Scholar 

  12. Ismael, A.M., Şengür, A.: Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Syst. Appl. 164, 114054 (2021)

    Google Scholar 

  13. Jain, R., Gupta, M., Taneja, S., Jude Hemanth, D.: Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 51(3), 1690–1700 (2021)

    Google Scholar 

  14. Lippi, G., Simundic, A.-M., Plebani, M.: Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin. Chem. Lab. Med. (CCLM) 58(7), 1070–1076 (2020)

    Article  Google Scholar 

  15. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Google Scholar 

  16. Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal. Appl. 1–14 (2021)

    Google Scholar 

  17. Ouchicha, C., Ammor, O., Meknassi, M.: CVDNet: a novel deep learning architecture for detection of coronavirus (COVID-19) from chest X-ray images. Chaos, Solitons Fractals 140, 110245 (2020)

    Article  MathSciNet  Google Scholar 

  18. Pathan, S., Siddalingaswamy, P.C., Ali, T.: Automated detection of COVID-19 from chest X-ray scans using an optimized CNN architecture. Appl. Soft Comput. 104, 107238 (2021)

    Google Scholar 

  19. Roy, P., Dutta, S., Dey, N., Dey, G., Chakraborty, S., Ray, R.: Adaptive thresholding: a comparative study. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 1182–1186. IEEE (2014)

    Google Scholar 

  20. Shi, F., Xia, L., Shan, F., Song, B., Dijia, W., Wei, Y., Yuan, H., Jiang, H., He, Y., Gao, Y., et al.: Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Phys. Med. Biol. 66(6), 065031 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashi Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, R., Hariharan, S. (2023). Diagnosis of COVID-19 Using Deep Learning Augmented with Contour Detection on X-rays. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586. Springer, Singapore. https://doi.org/10.1007/978-981-19-7867-8_16

Download citation

Publish with us

Policies and ethics