Skip to main content

Biomass

Sustainable Energy Solution from Agriculture

  • Reference work entry
  • First Online:
Handbook of Energy Management in Agriculture

Abstract

Biomass as energy source is being utilized since dawn of humans for various purposes like cooking, heating, and lighting. Prior to the nineteenth century, plant oil was the primary source of lighting fuel and wood was the primary fuel for cooking and heating. However, discovery of fossil fuel like coal and petroleum gradually reduced the use of biomass. Fossil fuels currently account for >80% of all energy use worldwide. With growing environmental concern and depleting fossil fuel resources, geophysical instability and climate change have changed the way biomass were thought of. The main benefits of biomass over other forms of renewable energy are that it is almost carbon neutral and that it is widely available. The environmental advantages of liquid biofuels, particularly biodiesel, have made them more appealing than biomass as a source of energy and wider use in automobile section. Production of biofuel domestically, and its use as alternate fuel, can help to reduce reliance on petroleum oil, decrease trade imbalances, air pollution, and GHG emissions. However, the second-generation biofuels, raw materials, high cost, marketing, and priority given to it all suggest that switching the energy demand from fossil fuels to biofuels will be difficult, at least for a few years. However, with demand and intervention of strong government policies, use of nonfood biomass will be a sustainable step toward reliving our reliance for fossil fuel. Moreover, it will help in achieving our goal in reducing carbon footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abo, B. O., Gao, M., Wang, Y., Wu, C., Ma, H., & Wang, Q. (2019). Lignocellulosic biomass for bioethanol: An overview on pretreatment, hydrolysis and fermentation processes. Reviews on Environmental Health, 34(1), 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Anon. (2013). https://www.carsdirect.com/green-cars/ethanol-fuel-pros-and-cons

  • Anon. (2021). Ethanol – Global market trajectory & analytics. MCP-2058. Available at: https://www.strategyr.com/market-report-ethanol-forecasts-global-industry-analysts-inc.asp#:~:text=China%20is%20expected%20to%20spearhead,8.9%25%20over%20the%20analysis%20period

  • Antal, M. J., & Gronli, M. (2003). The art, science, and technology of charcoal production. Industrial Engineering Chemistry Research, 42, 1619–1640.

    Article  CAS  Google Scholar 

  • Bajwa, D. S., Peterson, T., Sharma, N., Shojaeiarani, J., & Bajwa, S. G. (2018). A review of densified solid biomass for energy production. Renewable and Sustainable Energy Reviews, 96, 296–305.

    Article  Google Scholar 

  • Balat, M. & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273–2282.

    Google Scholar 

  • Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K. & Pandey, A. (2010). Bioethanol production from rice straw: An overview. Bioresource Technology, 101(13), 4767–74.

    Google Scholar 

  • Biswas, P. K., Pohit, S., & Kumar, R. (2010). Biodiesel from Jatropha: Can India meet the 20% blending target? Energy Policy, 38(3), 1477–1484.

    Google Scholar 

  • Bournay, L., Casanave, D., Delfort, B., Hillion, G., & Chodorge, J. A. (2005). New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today, 106(1–4), 190–192.

    Article  CAS  Google Scholar 

  • Cardoen, D., Joshi, P., Diels, L., Sarma, P. M., & Pant, D. (2015). Agriculture biomass in India: Part 1. Estimation and characterization. Resources, Conservation and Recycling, 102, 39–48.

    Article  Google Scholar 

  • Clauser, N. M., González, G., Mendieta, C. M., Kruyeniski, J., Area, M. C., & Vallejos, M. E. (2021). Biomass waste as sustainable raw material for energy and fuels. Sustainability, 13(2), 794.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30(2), 219–230.

    Article  CAS  Google Scholar 

  • Demirbas, A., Ahmad, W., Alamoudi, R., & Sheikh, M. (2016). Sustainable charcoal production from biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(13), 1882–1889.

    Google Scholar 

  • EIA. (2021). Biofuels explained. https://www.eia.gov/energyexplained/biofuels/ethanol.php

  • Enerdata. (2021). Biofuel evolution perspectives. Available at: https://www.enerdata.net/publications/executive-briefing/biofuels-market-dynamics.html

  • FAO. (2013). FAOSTAT-Forestry database [WWW document]. Forest product statistics. https://www.fao.org/3/ca8642en/ca8642en.pdf

  • Gallagher, P. W. (2006). Energy production with biomass: What are the prospects? Choices, 21(316-2016-7282), 21–26.

    Google Scholar 

  • Grover, P. D., & Mishra, S. K. (1996). Biomass briquetting: Technology and practices (Vol. 46). Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and perspective. Renewable and sustainable energy reviews, 42, 712–725.

    Google Scholar 

  • Gustafson, C. (2008). History of ethanol production and policy. https://afdc.energy.gov/fuels/ethanol_fuel_basics.html. Fuel Properties.

  • IEA. (2013). World energy outlook 2013 (Flagship Report). International Energy Agency.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Geneva.

    Google Scholar 

  • Kamrun, N., & Sunny, S. A. (2011). Extraction of biodiesel from a second generation energy crop (Jatropha curcas L.) by transesterification process. Journal of Environmental Science and Technology, 4(5), 498–503.

    Google Scholar 

  • Karimi, K., Emtiazi, G. & Taherzadeh, M. J. (2006). Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus. Process Biochemistry, 41(3), 653–658.

    Google Scholar 

  • Koh, M. Y., & Ghazi, T. I. M. (2011). Ghazi. A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews, 15(5), 2240–2251.

    Article  CAS  Google Scholar 

  • Lahiry, S. (2018). Biodiesel in India: The Jatropha fiasco. DownToEarth. https://www.downtoearth.org.in/blog/energy/biodiesel-in-india-the-jatropha-fiasco-61321

  • Lamichhane, G., Acharya, A., Poudel, D. K., Arya, B., Gyawali, N., Niraula, P., Phuyala, S. R., Budhathoki, P., Bka, G., & Parajuli, N. (2021). Recent advances in bioethanol production from lignocellulosic biomass. International Journal of Green Energy, 18(7), 731–744.

    Article  CAS  Google Scholar 

  • Larson, E. D. (2008). United nations conference on trade and development biofuel production technologies: Status, Prospects and Implications for Trade and Development. UNCTAD, Switzerland.

    Google Scholar 

  • Leahy, M., Barden, J. L., Murphy, B. T., Slater-thompson, N., & Peterson, D. (2013). International energy outlook 2013 (pp. 55–87). The US Energy Information Administration.

    Google Scholar 

  • Leung, D. Y., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095.

    Article  CAS  Google Scholar 

  • Lim, J. S., Manan, Z. A., Alwi, S. R. W., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16(5), 3084–3094.

    Article  CAS  Google Scholar 

  • Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R. & Monot, F. (2009). New improvements for lignocellulosic ethanol. Current Opinion in Biotechnology, 20(3), 372–380.

    Google Scholar 

  • McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology, 83, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Ministry of Petroleum & Natural Gas. (2019). Pradhan Mantri JiVan Yojana. Retrieved from https://mopng.gov.in/files/uploads/PM_JI-VAN_YOJANA.pdf

  • MNRE. (2021). Current status | Ministry of New and Renewable Energy, Government of India [WWW document]. Ministry of New and Renewable Energy. https://mnre.gov.in/bio-energy/current-status. Accessed 18 Nov 2021.

  • Mordor Intelligence. (2021). Bio-ethanol market – Growth, trends, COVID-19 impact, and forecasts (2021–2026). Available at: https://www.mordorintelligence.com/industry-reports/bio-ethanol-market

  • NDTV. (2016, July 25). Retrieved from https://www.ndtv.com/india-news/kerala-veterinarian-john-abraham-gets-patent-for-biodiesel-from-chicken-waste-2494515

  • Niphadkar, S., Bagade, P. & Ahmed, S. (2017). Bioethanol production: insight into past, present and future perspectives. Biofuels, 9(14), 1–10.

    Google Scholar 

  • ORNL (Oak Ridge National Laboratory). (2013). Transportation energy data book (32nd ed.).

    Google Scholar 

  • Prasad, S., Singh, A. & Joshi, H.C. (2007). Ethanol as an alternative fuel from agricultural, industrial, and urban residues. Resources Conservation and Recycling, 50, 1–3.

    Google Scholar 

  • Renewable Fuels Association. (2021). Available at: https://afdc.energy.gov/data/10331. Accessed 1 Nov 2021.

  • RFA Releases. (2017). Ethanol industry outlook, pocket guide. Renewable Fuels Association (blog). February 21, 2017. https://ethanolrfa.org/2017/02/rfa-releases-2017-ethanol-industry-outlook-pocket-guide/

  • Romano, S. D., & Sorichetti, P. A. (2010). Dielectric spectroscopy in biodiesel production and characterization. Springer.

    Book  Google Scholar 

  • Sarwal, R., Kumar, S., Mehta, A., Varadan, A., Singh, S. K., Ramakumar, S. S. V., & Mathai, R. (2021). Roadmap for ethanol blending in India 2020–25: Report of the Expert Committee.

    Google Scholar 

  • Schulz, H. (1999). Short history and present trends of Fischer–Tropsch synthesis. Applied Catalysis A: General, 186, 3–12.

    Article  CAS  Google Scholar 

  • Sieminski, A. (2014). International energy outlook. U.S. Energy Information Administration (EIA).

    Google Scholar 

  • Sonnino, A. (1994). Agricultural biomass production is an energy option for the future. Renewable Energy, 5(5–8), 857–865.

    Article  CAS  Google Scholar 

  • Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of bioscience and bioengineering, 100(6), 637–643.

    Google Scholar 

  • Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 101(13), 4744–4753.

    Google Scholar 

  • Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining, 5(6), 683–707.

    Article  CAS  Google Scholar 

  • Tziourtzioumis, D. N., & Stamatelos, A. M. (2014). Investigation of the effect of biodiesel blends on the performance of a fuel additive-assisted diesel filter system. International Journal of Engine Research, 15(4), 406–420.

    Article  CAS  Google Scholar 

  • Ulaganathan, K., Goud, S., Reddy, M., & Kayalvili, U. (2017). Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renewable and Sustainable Energy Reviews, 74, 1080–1107.

    Article  CAS  Google Scholar 

  • USEIA. (2020). Biofuels explained biomass-based diesel fuels [WWW document]. Independent Statistics & Analysis. https://www.eia.gov/energyexplained/biofuels/biodiesel.php

  • USEIA. (2021). Hydrogen explained use of hydrogen. Independent Statistics & Analysis.

    Google Scholar 

  • Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063–1071.

    Article  CAS  Google Scholar 

  • Waqas, M., Aburiazaiza, A. S., Miandad, R., Rehan, M., Barakat, M. A., & Nizami, A. S. (2018). Development of biochar as fuel and catalyst in energy recovery technologies. Journal of Cleaner Production, 188, 477–488.

    Article  CAS  Google Scholar 

  • Zhou, Y., Searle, S., & Anup, S. (2021). Techno-economic analysis of cellulosic ethanol in India using agricultural residues.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dubey, R. et al. (2023). Biomass. In: Rakshit, A., Biswas, A., Sarkar, D., Meena, V.S., Datta, R. (eds) Handbook of Energy Management in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-19-7736-7_11-1

Download citation

Publish with us

Policies and ethics