Skip to main content

PTT/Rubber, Thermoplastic and Thermosetting Polymer Blends and IPNs

  • Chapter
  • First Online:
Poly Trimethylene Terephthalate

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Polymers with ester as the functional group on the main chain are called polyesters. In industries, the term polyester refers to mainly polyethylene terephthalate (PET) and polybutylene terephthalate (Yilmaa et al. in Mater Res 24:e20210021, 2021). Depending on the chemical structure, polyesters are classified into thermoplastic and thermosetting polyesters. The main source of polyesters is petroleum origin and is typically available in the form of plastics, films and fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yilmaa BB, Luebben JF, Tadesse MG (2021) Effect of plasma surface modification on comfort properties of polyester/cotton blend fabric. Mater Res 24(3):e20210021. https://doi.org/10.1590/1980-5373-MR-2021-0021

  2. Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi MN, Lee CH (2021) A review on properties and application of bio-based poly(butylene succinate). Polymers 13:1436. https://doi.org/10.3390/polym13091436

    Article  CAS  Google Scholar 

  3. Panigrahi H, Sreenath PR, Kotnees DK (2020) Unique compatibilized thermoplastic elastomer with high strength and remarkable ductility: effect of multiple point interactions within a rubber-plastic blend. ACS Omega 5(22):12789–12808. https://doi.org/10.1021/acsomega.0c00423

  4. Terzopoulou Z, Papadopoulos L, Zamboulis A, Papageorgiou DG, Papageorgiou GZ, Bikiaris DN (2020) Tuning the properties of furandicarboxylic acid-based polyesters with copolymerization: a review. Polymers 12(6):1209. https://doi.org/10.3390/polym12061209

  5. Braga NF, Zaggo HM, Montanheiro TLA, Passador FR (2019) Preparation of maleic anhydride grafted poly(trimethylene terephthalate) (PTT-g-MA) by reactive extrusion processing. J Manuf Mater Process 3:37. https://doi.org/10.3390/jmmp3020037

  6. Li L, Areson C, van der Straten A, Johnson LM (2021) Effects of polymer blending on the performance of a subcutaneous biodegradable implant for HIV pre-exposure prophylaxis (PrEP). Int J Mol Sci 22(12):6529. https://doi.org/10.3390/ijms22126529

  7. Inguva PK, Walker PJ, Yew HW, Zhu K, Haslam AJ, Matar OK (2021) Continuum-scale modelling of polymer blends using the Cahn–Hilliard equation: transport and thermodynamics. Soft Matter 17:5645–5665. https://doi.org/10.1039/D1SM00272D

  8. Panapitiya N, Wijenayake S, Nguyen D, Karunaweera C, Huang Y, Balkus K, Musselman I, Ferraris J (2016) Compatibilized immiscible polymer blends for gas separations. Materials 9(8):643. https://doi.org/10.3390/ma9080643

  9. Uemura T, Kaseda T, Sasaki Y, Inukai M, Toriyama T, Takahara A, Jinnai H, Kitagawa S (2015) Mixing of immiscible polymers using nanoporous coordination templates. Nat Commun 6. Article number: 7473. https://doi.org/10.1038/ncomms8473

  10. Bhatnagar MP, Mahanwar P (2019) Investigating the compatibility of thermoplastic polyester elastomer/high-density polyethylene blends and its effect on the horizontal flame propagation. Plast Rubber Compos. https://doi.org/10.1080/14658011.2019.1701867

  11. Czarnecka-Komorowska D, Nowak-Grzebyta J, Gawdzińska K, Mysiukiewicz O, Tomasik M (2021) Polyethylene/polyamide blends made of waste with compatibilizer: processing, morphology, rheological and thermo-mechanical behavior. Polymers 13:2385. https://doi.org/10.3390/polym13142385

  12. Zeng J-B, Li K-A, Du A-K (2015) Compatibilization strategies in poly(lactic acid)-based blends. RSC Adv 5:32546–32565. https://doi.org/10.1039/C5RA01655J

  13. do Amaral Montanheiro TL, Passador FR, de Oliveira MP, Duránb N, Lemes AP (2016) Preparation and characterization of maleic anhydride grafted poly (hydroxybutirate-CO-hydroxyvalerate)—PHBV-g-MA. Mater Res 19(1):229–235. https://doi.org/10.1590/1980-5373-MR-2015-0496

  14. Zhang M, Colby RH, Milner ST, Chung TCM, Huang T, DeGroot W (2013) Synthesis and characterization of maleic anhydride grafted polypropylene with a well-defined molecular structure. Macromolecules 46(11):4313–4323. https://doi.org/10.1021/ma4006632

  15. Hoferíková A, Hricová M, Andrejková A, Marcincin A (2009) Effect of structure on mechanical properties of PP-PTT blend fibres. Chemicke Listy 103(13):s135–s138. https://www.researchgate.net/publication/288207544

  16. Snowdon MR, Mohanty AK, Misra M (2018) Effect of compatibilization on biobased rubber-toughened poly(trimethylene terephthalate): miscibility, morphology, and mechanical properties. ACS Omega 3(7):7300–7309. https://doi.org/10.1021/acsomega.8b00490

  17. Irska, Paszkiewicz S, Gorący K, Linares A, Ezquerra TA, Jędrzejewski R, Rosłaniec Z, Piesowicz E (2020) Poly(butylene terephthalate)/polylactic acid based copolyesters and blends: miscibility-structure-property relationship. eXPRESS Polym Lett 14(1):26–47. https://doi.org/10.3144/expresspolymlett.2020.4

  18. Xue ML, Yu YL, Chuah HH, Rhee JM, Kim NH, Lee JH (2007) Miscibility and compatibilization of poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene blends. Eur Polym J 43:3826–3837. https://doi.org/10.1016%2Fj.eurpolymj.2007.06.048

  19. Xue ML, Jing S, Chuah HH, Ya ZX (2004) Miscibility, morphology, and thermal properties of poly(trimethylene terephthalate)/polycarbonate blends. J Macromol Sci Part B Phys 43:1045–1061. https://doi.org/10.1081/MB-200033308

    Article  CAS  Google Scholar 

  20. Huang JM, Chang FC (2002) Miscibility, melting, and crystallization of poly(trimethylene terephthalate)/poly(ether imide) blends. J Appl Polym Sci 8:850–856. https://doi.org/10.1002/app.10367

  21. Krutphun P, Pitt S (2008) Miscibility, isothermal crystallization/melting behavior, and morphology of ploy(trimethylene terephthalate)/poly(butylenes terephthalate) blends. Adv Sci Technol 54:243–248. https://doi.org/10.4028/www.scientific.net/AST.54.243

  22. Szymczyk A (2009) Structure and properties of new polyester elastomer composed of poly(trimethylene terephthalate) and poly(ethylene oxide). Eur Polym J 45:2653–2664. https://doi.org/10.1016/J.EURPOLYMJ.2009.05.032.

  23. Walters MH, Keyte DN (1965) Heterogeneous structure in blends of rubber polymers. Rubber Chem Technol 38(1):62–75. https://doi.org/10.5254/1.3535639

    Article  Google Scholar 

  24. Zargar MRH, Ghaffarian A, Ebrahimzade A, Shoushtari AM (2021) Effect of organoclay on the rheology, morphology, thermal and mechanical properties of nanocomposite fibers based on polypropylene/poly(trimethylene terephthalate)/organoclay. J Macromol Sci Part B 60(6):435–459. https://doi.org/10.1080/00222348.2020.1858568

    Article  CAS  Google Scholar 

  25. Azman NFI, Zuhairi SA, Ratnam CT, Yaakob Y, Mamat MS (2021) Incorporation of multiwalled carbon nanotubes and graphene nanoplatelets on the morphology and properties of polyethylene terephthalate nanocomposites. J Nanomater 2021:1–9. https://doi.org/10.1155/2021/6633604

    Article  CAS  Google Scholar 

  26. Seymour RB (1989) Origin and early development of rubber-toughened plastics. Rubber-Toughened Plast 3–13. https://doi.org/10.1021/ba-1989-0222.ch001

  27. Papke N, Karger-Kocsis J (2001) Thermoplastic elastomers based on compatibilized poly(ethylene terephthalate) blends: effect of rubber type and dynamic curing. Polymer 42(3):1109–1120. https://doi.org/10.1016/s0032-3861(00)00475-4

    Article  CAS  Google Scholar 

  28. Yavari A, Asadinezhad A, Jafari SH, Khonakdar HA, Ahmadian S, Böhme F (2005) Linear viscoelastic characteristics of poly(trimethylene terephthalate)/polycarbonate blends in the melt state. Macromol Mater Eng 290(11):1091–1096. https://doi.org/10.1002/mame.200500184

    Article  CAS  Google Scholar 

  29. Djonlagic J, Nikolic MS (2011) Thermoplastic copolyester elastomers. In: Handbook of engineering and speciality thermoplastics, 377–427. https://doi.org/10.1002/9781118104729.ch10

  30. Wang KY (2013) Morphology and crystallization behavior of toughened poly(trimethylene terephthalate) blends with acrylonitrile-butadiene-styrene. Adv Mater Res 791–793:240–243. https://doi.org/10.4028/www.scientific.net/amr.791-793.240

  31. Effect of compatibilization on biobased rubber-toughened poly(trimethylene terephthalate): miscibility, morphology, and mechanical properties (n.d.). https://doi.org/10.1021/acsomega.8b00490.s001

  32. Bai Y, Li N, Liu Y, Run M (2015) Morphology and mechanical properties of poly(trimethylene terephthalate)/maleinized acrylonitrile-butadiene-styrene blends. Asian J Chem 27(7):2548–2554. https://doi.org/10.14233/ajchem.2015.18229

    Article  CAS  Google Scholar 

  33. Chen T, Zhang J (2018) Compatibilization of acrylonitrile-butadiene-styrene terpolymer/poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) blend: effect on morphology, interface, mechanical properties and hydrophilicity. Appl Surf Sci 437:62–69. https://doi.org/10.1016/j.apsusc.2017.12.168

    Article  CAS  Google Scholar 

  34. Wang J, Zhang X, Jiang L, Qiao J (2019) Advances in toughened polymer materials by structured rubber particles. Prog Polym Sci 98:101160. https://doi.org/10.1016/j.progpolymsci.2019.101160

    Article  CAS  Google Scholar 

  35. Wong S-C, Mai Y-W (2000) Effect of rubber functionality on microstructures and fracture toughness of impact-modified nylon 6,6/polypropylene blends Part II. Toughening mechanisms. Polymer 41(14):5471–5483. https://doi.org/10.1016/s0032-3861(99)00750-8

    Article  CAS  Google Scholar 

  36. Liang JZ, Li RKY (2000) Rubber toughening in polypropylene: a review. J Appl Polym Sci 77(2):409–417

    Article  CAS  Google Scholar 

  37. Mishra JK, Chang Y-W, Choi NS (2007) Preparation and characterization of rubber-toughened poly(trimethylene terephthalate)/organoclay nanocomposite. Polym Eng Sci 47(6):863–870. https://doi.org/10.1002/pen.20770

    Article  CAS  Google Scholar 

  38. Guerrica-Echevarría G, Eguiazábal JI, Nazábal J (2007) Influence of compatibilization on the mechanical behavior of poly(trimethylene terephthalate)/poly(ethylene–octene) blends. Eur Polym J 43(3):1027–1037. https://doi.org/10.1016/j.eurpolymj.2006.11.036

    Article  CAS  Google Scholar 

  39. Ravikumar HB, Ranganathaiah C, Kumaraswamy GN, Thomas S (2005) Positron annihilation and differential scanning calorimetric study of poly(trimethylene terephthalate)/EPDM blends. Polymer 46(7):2372–2380. https://doi.org/10.1016/j.polymer.2004.12.058

    Article  CAS  Google Scholar 

  40. Vincent L, Connolly SN, Dolan F, Willcocks PH, Jayaweera SAA, Pendlebury R (2006) Determination and comparison of the plane stress essentialwork of fracture of three polyesters PET, PPT and PBT. J Therm Anal Calorim 86(1):147–154. https://doi.org/10.1007/s10973-006-7595-1

    Article  CAS  Google Scholar 

  41. Holden G (1987) Thermoplastic elastomers. Rubber Technol 465–481. https://doi.org/10.1007/978-1-4615-7823-9_16

  42. Wang KY (2018) Morphology and crystallization behavior of PTT blends with PTW. Key Eng Mater 777:90–94

    Article  Google Scholar 

  43. Sharma R, Jain P, Sadhu SD (2019) Study of morphological and mechanical properties of PBT/PTT blends and their nanocomposites and their correlation. Arab J Sci Eng 44(2):1137–1150

    Google Scholar 

  44. Paszkiewicz S et al (2015) Enhanced thermal and mechanical properties of poly(Trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. eXPRESS Polym Lett 9:509–524

    Google Scholar 

  45. Xue M et al (2020) Prominent crystallization promotion effect of montmorillonite on PTT/PC blends with PTT as the continuous phase. Polymers 12(3):541

    Article  CAS  Google Scholar 

  46. Braga NF et al (2019) Influence of compatibilizer and carbon nanotubes on mechanical, electrical, and barrier properties of PTT/ABS blends. Adv Ind Eng Polym Res 2(3):121–125

    Google Scholar 

  47. Sperling LH, Hu R (2003) Interpenetrating polymer networks. In: Utracki LA (ed) Polymer blends handbook. Springer Netherlands, Dordrecht, pp 417–447

    Google Scholar 

  48. Roland CM (2013) Interpenetrating Polymer Networks (IPN): structure and mechanical behavior. In: Kobayashi S (ed) M.K.e.E.o.P.N.S. Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_91-1

  49. Lee MJ, Choi YS, Kang YS, Choi JH, Kang MS (2012) All-solid-state proton conductive

    Google Scholar 

  50. Pan H, Pu H, Wan D, Jin M, Chang Z (2011) Proton exchange membranes based on semi-interpenetrating

    Google Scholar 

  51. Sangermano M, Cook WD, Papagna S, Grassini S (2012) Hybrid UV-cured organic–inorganic

    Google Scholar 

  52. Snowdon MR, Mohanty AK, Misra M, Effect of compatibilization on biobased

    Google Scholar 

  53. Chen H-B et al (2013) Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenz〈c, e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: synthesis, thermal degradation, combustion and pyrolysis behavior. J Anal Appl Pyrol 99:40–48

    Google Scholar 

  54. Jia SY et al (2007) Stannous-acetylacetonate: a new catalyst for poly(trimethylene terephthalate) synthesis. Chin Chem Lett 18(7):827–830

    Article  CAS  Google Scholar 

  55. Aoyama S et al (2014) Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 55(8):2077–2085

    Google Scholar 

  56. Chen Z et al (2012) The influences of polyethylene glycol molecular weight on thermal stability, nonisothermal crystallization behavior, and morphology of poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers. Polym Testing 31(5):685–696

    Article  CAS  Google Scholar 

  57. Yin L et al (2013) Crystallization behavior of poly(trimethylene terephthalate)/mesoporous silica SBA-15 composites prepared by in situ polymerization. Thermochim Acta 565:72–81

    Article  CAS  Google Scholar 

  58. Khil MS et al (2004) Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer 45(1):295–301

    Article  CAS  Google Scholar 

  59. Li M et al (2013) A novel high flux poly(trimethylene terephthalate) nanofiber membrane for microfiltration media. Sep Purif Technol 116:199–205

    Article  CAS  Google Scholar 

  60. Aravind I, Pionteck J, Thomas S (2012) Transreactions in poly trimethylene terephthalate/bisphenol-A polycarbonate (PC) blends analysed by pressure-volume-temperature measurements. Polym Testing 31(1):16–24

    Article  CAS  Google Scholar 

  61. Chen J, Wu D (2014) Poly(trimethylene terephthalate)/Poly(butylenes succinate) blend: phase behavior and mechanical property control using its transesterification system as the compatibilizer. Mater Chem Phys 148(3):554–561

    Article  CAS  Google Scholar 

  62. Nagarajan V, Mohanty AK, Misra M (2016) Reactive compatibilization of poly trimethylene terephthalate (PTT) and polylactic acid (PLA) using terpolymer: factorial design optimization of mechanical properties. Mater Des 110:581–591

    Article  CAS  Google Scholar 

  63. Sarathchandran C et al (2016) Interfacial interactions of thermally reduced graphene in poly(trimethylene terephthalate)-epoxy resin based composites. Polymer 106:140–151

    Article  CAS  Google Scholar 

  64. Favaro MM, Beatrice CA, Branciforti MC, Bretas RE (2008) Rheological characterization of PTT/MMT nanocomposites

    Google Scholar 

  65. Wang G, Jiang M, Zhang Q, Wang R, Liang Q, Zhou G (2019) New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties. Polymer

    Google Scholar 

  66. Dangseeyun N, Supaphol P, Nithitanakul M (2004) Thermal, crystallization, and rheological characteristics of poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym Testing 23(2):187–194. https://doi.org/10.1016/s0142-9418(03)00079-5

    Article  CAS  Google Scholar 

  67. Ramachandran AA, Mathew LP, Thomas S (2019) Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur Polymer J 118:595–605

    Article  CAS  Google Scholar 

  68. Mathew L et al (2018) Tuning of microstructure in engineered poly (trimethylene terephthalate) based blends with nano inclusion as multifunctional additive. Polym Testing 68:395–404

    Google Scholar 

  69. Wu D et al (2011) Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. Eur Polym J 47(3):284–293

    Article  CAS  Google Scholar 

  70. Pisitsak P, Magaraphan R (2009) Rheological, morphological, thermal, and mechanical properties of blends of vectra A950 and poly(trimethylene terephthalate): a study on a high-viscosity-ratio system. Polym Testing 28(2):116–127

    Article  CAS  Google Scholar 

  71. Inan TY (2017) 2—Thermoplastic-based nanoblends: preparation and characterizations. In: Visakh PM, Markovic G, Pasquini D (eds) Recent developments in polymer macro, micro and nano blends. Woodhead Publishing, pp 17–56

    Google Scholar 

  72. Shu Y-C, Hsiao K-J (2006) Preparation and physical properties of poly(trimethylene terephthalate)/metallocene isotactic polypropylene conjugated fibers. Eur Polymer J 42(10):2773–2780

    Article  CAS  Google Scholar 

  73. Böhme F, Komber H, Jafari SH (2006) Synthesis and characterization of a novel unsaturated polyester based on poly(trimethylene terephthalate). Polymer 47(6):1892–1898

    Article  Google Scholar 

  74. Irska I et al (2021) Relaxation behaviour and free volume of bio-based poly(trimethylene terephthalate)-block-poly(caprolactone) copolymers as revealed by Broadband Dielectric and Positron Annihilation Lifetime Spectroscopies. Polymer 229:123949

    Article  CAS  Google Scholar 

  75. Martín-Fabiani I et al (2013) Dielectric relaxation of poly (trimethylene terephthalate) in a broad range of crystallinity. Polymer 54(21):5892–5898

    Article  Google Scholar 

  76. Wang G et al (2019) New bio-based copolyesters poly(trimethylene 2,5-thiophenedicarboxylate-co-trimethylene terephthalate): synthesis, crystallization behavior, thermal and mechanical properties. Polymer 173:27–33

    Article  CAS  Google Scholar 

  77. Korivi NS (2015) 8—Preparation, characterization, and applications of poly(ethylene terephthalate) nanocomposites. In: Mittal V (ed) Manufacturing of nanocomposites with engineering plastics. Woodhead Publishing, pp 167–198

    Google Scholar 

  78. Kurian JV (2005) A new polymer platform for the future—Sorona® from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167

    Article  CAS  Google Scholar 

  79. Padee S et al (2013) Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541

    Article  CAS  Google Scholar 

  80. Lyoo WS, Lee HS, Ji BC, Han SS, Koo K, Kim SS, Kim JH, Lee J-S, Son TW, Yoon WS (2001) Effect of zone drawing on the structure and properties of melt-spun poly(trimethylene terephthalate) fiber. J Appl Polym Sci 81(14) (2001)

    Google Scholar 

  81. Xing X, Wang Y, Li B (2008) Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Opt Express 16(14):10815–10822

    Article  CAS  Google Scholar 

  82. Wang C, Fang C-Y, Wang C-Y (2015) Electrospun poly(butylene terephthalate) fibers: entanglement density effect on fiber diameter and fiber nucleating ability towards isotactic polypropylene. Polymer 72:21–29

    Article  CAS  Google Scholar 

  83. Deshmukh GS et al (2015) Nonisothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) and calcium carbonate nanocomposites. Thermochim Acta 606:66–76

    Article  CAS  Google Scholar 

  84. Padee S, Thumsorn S, On JW, Surin P, Apawet C, Chaichalermwong T, Srisawat N (2013) Preparation of poly (lactic acid) and poly (trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541

    Google Scholar 

  85. Padee S, Thumsorn S, On JW, Surin P, Apawet C, Chaichalermwong T, Kaabbuathong N, O-Charoen N, Srisawat N (2013) Preparation of poly(lactic acid) and poly(trimethylene terephthalate) blend fibers for textile application. Energy Procedia 34:534–541 (2013). ISSN 1876-6102. https://doi.org/10.1016/j.egypro.2013.06.782

  86. Khil MS, Kim HY, Kim MS, Park SY, Lee D-R (2004) Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer 45(1):295–301. ISSN 0032-3861. https://doi.org/10.1016/j.polymer.2003.09.049

  87. Ajitha AR, Mathew LP, Thomas S (2019) Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur Polym J 118:595–605. ISSN 0014-3057. https://doi.org/10.1016/j.eurpolymj.2019.06.027

  88. Ajitha AR, Geethamma VG, Mathew L, Saha P, Kalarikkal N, Thomas S, Strankowski M (2018) Tuning of microstructure in engineered poly (trimethylene terephthalate) based blends with nano inclusion as multifunctional additive. Polym Test 68:395–404. ISSN 0142-9418. https://doi.org/10.1016/j.polymertesting.2018.03.052

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedha Sambhudevan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, R.M., Sambhudevan, S., Hema, S., Reghunadhan, A. (2023). PTT/Rubber, Thermoplastic and Thermosetting Polymer Blends and IPNs. In: Ajitha, A.R., Thomas, S. (eds) Poly Trimethylene Terephthalate. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7303-1_4

Download citation

Publish with us

Policies and ethics