Skip to main content

Plasma Physics of the Intracluster Medium

  • Reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

This chapter provides a brief tutorial on some aspects of plasma physics that are fundamental to understanding the dynamics and energetics of the intracluster medium (ICM). The tutorial is split into two parts: one that focuses on the thermal plasma component – its stability, viscosity, conductivity, and ability to amplify magnetic fields to dynamical strengths via turbulence and other plasma processes; and one that focuses on the non-thermal population of charged particles known as cosmic rays – their acceleration, re-acceleration, and transport throughout the cluster volume. Observational context is woven throughout the narrative, from constraints on the strength and geometry of intracluster magnetic fields and the effective viscosity of the ICM, to examples of radio halos, radio relics, and cluster shocks that can test theories of particle acceleration. The promise of future X-ray missions to probe intracluster turbulence and discover the impact of small-scale plasma physics, coupled with sensitive, high-resolution radio observations of synchrotron-emitting plasma that reveal the properties of intracluster magnetic fields and particle-acceleration mechanisms, are likely to establish galaxy clusters as the premier cosmic laboratories for deciphering the fundamental physics of hot, dilute plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • B.J. Albright, B.D.G. Chandran, S.C. Cowley, M. Loh, Parallel heat diffusion and subdiffusion in random magnetic fields. Phys. Plasmas. 8, 777 (2001)

    ADS  Google Scholar 

  • L. Arzamasskiy, M.W. Kunz, J. Squire, E. Quataert, A.A Schekochihin, Kinetic turbulence in collisionless high-beta plasmas (2022). arXiv:2207.05189

    Google Scholar 

  • S.A. Balbus, Stability, instability, and “backward” transport in stratified fluids. Astrophys. J. 534, 420 (2000)

    ADS  Google Scholar 

  • S.A. Balbus, Convective and rotational stability of a dilute plasma. Astrophys. J. 562, 909 (2001)

    ADS  Google Scholar 

  • S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D. Sundkvist, Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103, 211101 (2009)

    ADS  Google Scholar 

  • A. Barnes, Collisionless damping of hydromagnetic waves. Phys. Fluids 9, 1483 (1966)

    ADS  Google Scholar 

  • G.K. Batchelor, On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. London A 201, 405 (1950)

    ADS  MathSciNet  Google Scholar 

  • R. Beck, M. Krause, Revised equipartition and minimum energy formula for magnetic field strength estimates from radio synchrotron observations. Astron. Nachr. 326, 414 (2005)

    ADS  Google Scholar 

  • A. Bell, The acceleration of cosmic rays in shock fronts – I. Mon. Not. R. Astron. Soc. 182, 147 (1978a)

    ADS  Google Scholar 

  • A. Bell, The acceleration of cosmic rays in shock fronts – II. Mon. Not. R. Astron. Soc. 182, 443 (1978b)

    ADS  Google Scholar 

  • A. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550 (2004)

    ADS  Google Scholar 

  • A. Beresnyak, Universal nonlinear small-scale dynamo. Phys. Rev. Lett. 108, 035002 (2012)

    ADS  Google Scholar 

  • V. Berezinsky, P. Blasi, V. Ptuskin, Clusters of galaxies as storage room for cosmic rays. Astrophys. J. 487, 529 (1997)

    ADS  Google Scholar 

  • M.L. Bernet, F.L. Miniati, J. Simon, P.P. Kronberg, M. Dessauges-Zavadsky, Strong magnetic fields in normal galaxies at high redshift. Nature 454, 302 (2008)

    ADS  Google Scholar 

  • L. Biermann, xxxomluxxxber den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum (miteinem Anhang von A. Schlxxxomluxxxter). Zeitschrift Naturforschung Teil A 5, 65 (1950)

    Google Scholar 

  • R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 211, L29 (1978)

    ADS  Google Scholar 

  • A. Bonafede, M. Brüggen, D. Rafferty, I. Zhuravleva, C.J. Riseley, R.J. van Weeren, J.S. Farnes et al., LOFAR discovery of radio emission in MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 478, 2927 (2018)

    Google Scholar 

  • A. Bonafede, L. Feretti, M. Murgia, F. Govoni, G. Giovannini, D. Dallacasa, K. Dolag et al., The Coma cluster magnetic field from Faraday rotation measures. Astron. Astrophys. 513, A30 (2010)

    ADS  Google Scholar 

  • S.-I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  • G. Brunetti, T. Jones, Cosmic rays in galaxy clusters and their nonthermal emissions. Int. J. Mod. Phys. D23, 1430007 (2014)

    ADS  Google Scholar 

  • G. Brunetti, A. Lazarian, Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration. Mon. Not. R. Astron. Soc. 378, 245 (2007)

    ADS  Google Scholar 

  • G. Brunetti, A. Lazarian, Stochastic re-acceleration of relativistic electrons by turbulent reconnection: a mechanism for cluster-scale radio emission? Mon. Not. R. Astron. Soc. 458, 2584 (2016)

    ADS  Google Scholar 

  • G.R. Burbidge, Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Astrophys. J. 129, 849 (1959)

    ADS  Google Scholar 

  • C.L. Carilli, G.B. Taylor, Cluster magnetic fields. Ann. Rev. Astron. Astrophys. 40, 319 (2002)

    ADS  Google Scholar 

  • B.D.G. Chandran, S.C. Cowley, Thermal conduction in a tangled magnetic field. Phys. Rev. Lett. 80, 3077 (1998)

    ADS  Google Scholar 

  • B.D.G. Chandran, S.C. Cowley, M. Ivanushkina, R. Sydora, Heat transport along an inhomogeneous magnetic field. I. Periodic magnetic mirrors. Astrophys. J. 525, 638 (1999)

    ADS  Google Scholar 

  • B.D.G. Chandran, J.L. Maron, Thermal conduction and particle transport in strong magnetohydrodynamic turbulence, with application to galaxy cluster plasmas. Astrophys. J. 602, 170 (2004)

    ADS  Google Scholar 

  • S. Chandrasekhar, A.N. Kaufman, K.M. Watson, The stability of the pinch. Proc. R. Soc. Lond. A 245, 435 (1958)

    ADS  MathSciNet  Google Scholar 

  • C.H.K. Chen, L. Matteini, A.A. Schekochihin, M.L. Stevens, C.S. Salem, B.A. Maruca, M.W. Kunz, S.D. Bale, Multi-species measurements of the firehose and mirror instability thresholds in the solar wind. Astrophys. J. Lett. 825, L26 (2016)

    ADS  Google Scholar 

  • G.F. Chew, M.L. Goldberger, F.E. Low, The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions. Proc. R. Soc. Lond. Ser. A 236, 112 (1956)

    ADS  MathSciNet  Google Scholar 

  • S. Childress, A.D. Gilbert, Stretch, Twist, Fold: the Fast Dynamo (Springer, Berlin/Heidelberg, 1995)

    Google Scholar 

  • J. Cho, E.T. Vishniac, A. Beresnyak, A. Lazarian, D. Ryu, Growth of magnetic fields induced by turbulent motions. Astrophys. J. 693, 1449 (2009)

    ADS  Google Scholar 

  • E. Churazov, M. Ruszkowski, A. Schekochihin, Powering of cool filaments in cluster cores by buoyant bubbles – I. Qualitative model. Mon. Not. R. Astron. Soc. 436, 526 (2013)

    ADS  Google Scholar 

  • R.C. Davidson, D.A. Hammer, I. Haber, C.E. Wagner, Nonlinear development of electromagnetic instabilities in anisotropic plasmas. Phys. Fluids 15, 317 (1972)

    ADS  Google Scholar 

  • P. Desiati, E. Zweibel, The transport of cosmic rays across magnetic fieldlines. Astrophys. J. 791, 51 (2014)

    ADS  Google Scholar 

  • G. Di Genaro, R.J. van Weeren, G. Brunetti, C. Rossella, M. Brüggen, M. Hoeft, T.W. Shimwell et al., Fast magnetic field amplification in distant galaxy clusters. Nat. Astron. 5, 268 (2020)

    Google Scholar 

  • R. Dong, J.M. Stone, Buoyant bubbles in intracluster gas: effects of magnetic fields and anisotropic viscosity. Astrophys. J. 704, 1309 (2009)

    ADS  Google Scholar 

  • J.F. Drake, C. Pfrommer, C.S. Reynolds, M. Ruszkowski, M. Swisdak, A. Einarsson, T. Thomas et al., Astrophys. J. 923, 245 (2021)

    ADS  Google Scholar 

  • R. Durrer, A. Neronov, Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013)

    ADS  Google Scholar 

  • D. Eckert, M. Gaspari, F. Vazza, F. Gastaldello, A. Tramacere, S. Zimmer, S. Ettori et al., On the connection between turbulent motions and particle acceleration in galaxy clusters. Astrophys. J. Lett. 843, L29 (2017)

    ADS  Google Scholar 

  • A.C. Fabian, J.S. Sanders, C.S. Crawford, C.J. Conselice, J.S. Gallagher, R.F.G. Wyse, The relationship between the optical Hα filaments and the X-ray emission in the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 344, L48 (2003)

    ADS  Google Scholar 

  • A.C. Fabian, R.M. Johnstone, J.S. Sanders, C.J. Conselice, C.S. Crawford, J.S. Gallagher III, E. Zweibel, Magnetic support of the optical emission line filaments in NGC 1275. Nature 454, 968 (2008)

    ADS  Google Scholar 

  • L. Feretti, G. Giovannini, F. Govoni, M. Murgia, Clusters of galaxies: observational properties of the diffuse radio emission. Astron. Astrophys. Rev. 20, 54 (2012)

    ADS  Google Scholar 

  • A. Finoguenov, C.L. Sarazin, K. Nakazawa, D.R. Wik, T.E. Clarke, XMM-Newton Observation of the Northwest Radio Relic Region in A3667. Astrophys. J. 715, 1143 (2010)

    ADS  Google Scholar 

  • B.D. Fried, Mechanism for instability of transverse plasma waves. Phys. Fluids 2, 337 (1959)

    ADS  Google Scholar 

  • S.R. Furlanetto, A. Loeb, Intergalactic magnetic fields from quasar outflows. Astrophys. J. 556, 619 (2001)

    ADS  Google Scholar 

  • A.K. Galishnikova, M.W. Kunz, A.A. Schekochihin, Tearing instability and current-sheet disruption in the turbulent dynamo is now in press at Phys. Rev. X (2022). https://journals.aps.org/prx/accepted/f0070K06A291b70146905472839d76c285707425e

  • M. Gaspari, E. Churazov, D. Nagai, E.T. Lau, I. Zhuravleva, The relation between gas density and velocity power spectra in galaxy clusters: high-resolution hydrodynamic simulations and the role of conduction. Astron. Astrophys. 569, 67 (2014)

    ADS  Google Scholar 

  • S. Giacintucci, T. Venturi, S. Bardelli, G. Brunetti, R. Cassano, D. Dallacasa, The cluster relic source in A 521. New Astron. 11, 437 (2006)

    ADS  Google Scholar 

  • P. Girichidis,C. Pfrommer, R. Pakmor, V. Springel, Spectrally resolved cosmic rays: II – Momentum-dependent cosmic ray diffusion drives powerful galactic winds. Mon. Not. R. Astron. Soc. 510, 3917 (2021)

    ADS  Google Scholar 

  • N.Y. Gnedin, A. Ferrara, E.G. Zweibel, Generation of the primordial magnetic fields during cosmological reionization. Astrophys. J. 539, 505 (2000)

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680 (1997)

    ADS  Google Scholar 

  • F. Govoni, M. Murgia, V. Vacca, F. Loi, M. Girardi, F. Gastaldello, G. Giovannini et al., Sardinia Radio Telescope observations of Abell 194. The intra-cluster magnetic field power spectrum. Astron. Astrophys. 603, A122 (2017)

    Google Scholar 

  • J.-H. Ha, S. Kim, D. Ryu, H. Kang, Effects of multiscale plasma waves on electron pre-acceleration at weak quasi-perpendicular intracluster shocks. Astrophys. J. 915, 18 (2021)

    ADS  Google Scholar 

  • J.-H. Ha, D. Ryu, H. Kang, A. van Marle, Proton acceleration in weak quasi-parallel intracluster shocks: injection and early acceleration. Astrophys. J. 864, 105 (2018)

    ADS  Google Scholar 

  • N.E.L. Haugen, A. Brandenburg, W. Dobler, Is nonhelical hydromagnetic turbulence peaked at small scales? Astrophys. J. Lett. 597, L141 (2003)

    ADS  Google Scholar 

  • N.E. Haugen, A. Brandenburg, W. Dobler, Simulations of nonhelical hydromagnetic turbulence. Phys. Rev. E 70, 016308 (2004)

    ADS  Google Scholar 

  • A. Hasegawa, Drift mirror instability of the magnetosphere. Phys. Fluids. 12, 2642 (1969)

    ADS  Google Scholar 

  • P. Helander, M. Strumik, A.A. Schekochihin, Constraints on dynamo action in plasmas. J. Plasma. Phys. 82, 905820601 (2016)

    Google Scholar 

  • P. Hellinger, Comment on the linear mirror instability near the threshold. Phys. Plasmas. 14, 082105 (2007)

    ADS  Google Scholar 

  • P. Hellinger, H. Matsumoto, New kinetic instability: oblique Alfvén firehose. J. Geophys. Res. 105,10519 (2000)

    ADS  Google Scholar 

  • P. Hellinger, P.M. Trávníček, Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: hybrid simulations. J. Plasma. Phys. 81, 305810103 (2015)

    Google Scholar 

  • P. Hellinger, P. Trávníček, J.C. Kasper, A.J. Lazarus, Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, L09101 (2006)

    ADS  Google Scholar 

  • Hitomi Collaboration, The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117 (2016)

    Google Scholar 

  • P. Hopkins, J. Squire, T. Chan, E. Quataert, S. Ji, D. Keres, C. Faucher-Giguere, Testing physical models for cosmic ray transport coefficients on galactic scales: self-confinement and extrinsic turbulence at ∼GeV energies. Mon. Not. R. Astron. Soc. 501, 4184 (2021)

    ADS  Google Scholar 

  • W. Jaffe, Origin and transport of electrons in the halo radio source in the Coma cluster. Astrophys. J. 212, 1 (1977)

    ADS  Google Scholar 

  • A.R. Johnson, L. Rudnick, T.W. Jones, P.J. Mendygral, K. Dolag, Characterizing the uncertainty in cluster magnetic fields derived from rotation measures. Astrophys. J. 888, 101 (2020)

    ADS  Google Scholar 

  • T. Jones, H. Kang, An Efficient numerical scheme for simulating particle acceleration in evolving cosmic-ray modified shocks. Astropart. Phys. 24, 75 (2005)

    ADS  Google Scholar 

  • H. Kang, D. Ryu, J. Ha, Electron pre-acceleration in weak quasi-perpendicular shocks in high-beta intracluster Medium. Astrophy. J. 876, 79 (1999)

    ADS  Google Scholar 

  • H. Kang, D. Ryu, J. Ha, Cosmic ray proton acceleration at weak ICM shocks and observational signatures (2021). 2021cosp...43E1386K

    Google Scholar 

  • T.N. Kato, H. Takabe, Nonrelativstic collisionless shocks in unmagnetized electron-ion plasmas. Astrophys. J. Lett. 681, L93 (2008)

    ADS  Google Scholar 

  • J.C. Kasper, A.J. Lazarus, S.P. Gary, Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy. Geophys. Res. Lett. 29, 20 (2002)

    ADS  Google Scholar 

  • A.P. Kazantsev, Enhancement of a magnetic field by a conducting fluid. Sov. J. Exp. Theor. Phys. 26, 1031 (1968)

    ADS  Google Scholar 

  • A.N. Kolmogorov, Local structure of turbulence in incompressible viscous fluid at very large Reynolds numbers. Dokl. Akad. Nauk. SSSR. 30, 299 (1941)

    ADS  Google Scholar 

  • S.V. Komarov, E.M. Churazov, A.A. Schekochihin, J.A. ZuHone, Suppression of local heat flux in a turbulent magnetized intracluster medium. Mon. Not. R. Astron. Soc. 440, 1153 (2014)

    ADS  Google Scholar 

  • S.V. Komarov, E.M. Churazov, M.W. Kunz, A.A. Schekochihin, Thermal conduction in a mirror-unstable plasma. Mon. Not. R. Astron. Soc. 460, 467 (2016)

    ADS  Google Scholar 

  • S.V. Komarov, A.A. Schekochihin, E.M. Churazov, A. Spitkovsky, Self-inhibiting thermal conduction in a high-beta whistler-unstable plasma. J. Plasma. Phys. 84, 905840305 (2018)

    Google Scholar 

  • G. Kowal, D. Falceta-Goncalves, A. Lazarian, E. Vishniac, Kelvin-Helmholtz versus tearing instability: what drives turbulence in stochastic reconnection? Astrophys. J. 892, 50 (2020)

    ADS  Google Scholar 

  • M.D. Kruskal, The Gyration of a Charged Particle. Project Matterhorn Publications and Reports (Consultants Bureau, New York, 1958)

    Google Scholar 

  • R.M. Kulsrud, Basic plasma physics: selected chapters, in MHD Description of Plasma, ed. by A.A. Galeev, R.N. Sudan. Handbook of Plasma Physics, vol. 1 (1983), p. 1

    Google Scholar 

  • R.M. Kulsrud, S.W. Anderson, The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field. Astrophys. J. 396, 606 (1992)

    ADS  Google Scholar 

  • R.M. Kulsrud, R. Cen, J.P. Ostriker, D. Ryu, The protogalactic origin for cosmic magnetic fields. Astrophys. J. 480, 481 (1997)

    ADS  Google Scholar 

  • M.W. Kunz, Dynamical stability of a thermally stratified intracluster medium with anisotropic momentum and heat transport. Mon. Not. R. Astron. Soc. 417, 602 (2011)

    ADS  Google Scholar 

  • M.W. Kunz, A.A. Schekochihin, S.C. Cowley, J.J. Binney, J.S. Sanders, A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities. Mon. Not. R. Astron. Soc. 410, 2446 (2011)

    ADS  Google Scholar 

  • M.W. Kunz, A.A. Schekochihin, J.M. Stone, Firehose and mirror instabilities in a collisionless shearing plasma. Phys. Rev. Lett. 112, 205003 (2014)

    ADS  Google Scholar 

  • M. Lazar, R. Schlickeiser, R. Wielebinski, S. Poedts, Cosmological effects of Weibel-type instabilities. Astrophys. J. 693, 1133 (2009)

    ADS  Google Scholar 

  • A. Lazarian, E. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700 (1999)

    ADS  Google Scholar 

  • A. Levinson, D. Eichler, Inhibition of electron thermal conduction by electromagnetic instabilities. Astrophys. J. 387, 212 (1992)

    ADS  Google Scholar 

  • M. Lyutikov, Dissipation in intercluster plasma. Astrophys. J. Lett. 668, L1 (2007)

    ADS  Google Scholar 

  • S. Maiti, K. Makwana, H. Zhang, H. Yan, Cosmic ray transport in magnetohydrodynamic turbulence. Astrophys. J. 926 94 (2021)

    ADS  Google Scholar 

  • L. Malyshkin, R.M. Kulsrud, Magnetized turbulent dynamos in protogalaxies. Astrophys. J. 571, 619 (2002)

    ADS  Google Scholar 

  • A.B. Mantz, S.W. Allen, R.G. Morris, R.E.A. Canning, M. Bayliss, L.E. Bleem, B.T. Floyd et al., Deep XMM-Newton observations of the most distant SPT-SZ galaxy cluster. Mon. Not. R. Astron. Soc. 496, 1554 (2020)

    ADS  Google Scholar 

  • J. Maron, S. Cowley, J. McWilliams, The nonlinear magnetic cascade. Astrophys. J. 603, 569 (2004)

    ADS  Google Scholar 

  • M.V. Medvedev, A. Loeb, Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697 (1999)

    ADS  Google Scholar 

  • M.V. Medvedev, L.O. Silva, M. Kamionkowski, Cluster magnetic fields from large-scale structure and galaxy cluster shocks. Astrophys. J. Lett. 642, L1 (2006)

    ADS  Google Scholar 

  • S. Melville, A.A. Schekochihin, M.W. Kunz, Pressure-anisotropy-driven microturbulence and magnetic-field evolution in shearing, collisionless plasma. Mon. Not. R. Astron. Soc. 459, 2701 (2016)

    ADS  Google Scholar 

  • F. Miniati, The Matryoshka run. II. Time dependent turbulence statistics, stochastic particle acceleration, and microphysics impact in a massive galaxy cluster. Astrophys. J. 800, 60 (2015)

    Google Scholar 

  • F. Mogavero, A.A. Schekochihin, Models of magnetic field evolution and effective viscosity in weakly collisional extragalactic plasmas. Mon. Not. R. Astron. Soc. 440, 3226 (2014)

    ADS  Google Scholar 

  • M. Murgia, F. Govoni, L. Feretti, G. Giovannini, D. Dallacasa, R. Fanti, G.B. Taylor et al., Magnetic fields and Faraday rotation in clusters of galaxies. Astron. Astrophys. 424, 429 (2004)

    ADS  Google Scholar 

  • S. Naoz, R. Narayan, Generation of primordial magnetic fields on linear overdensity scales. Phys. Rev. Lett. 111, 051303 (2013)

    ADS  Google Scholar 

  • R. Narayan, M.V. Medvedev, Astrophys. J. Lett. 562, L129 (2001)

    ADS  Google Scholar 

  • E.N. Parker, Dynamical instability in an anisotropic ionized gas of low density. Phys. Rev. 109, 1874 (1958)

    ADS  Google Scholar 

  • V. Petrosian, On the nonthermal emission and acceleration of electrons in Coma and other clusters of galaxies. Astrophys. J. 557, 560 (2001)

    ADS  Google Scholar 

  • S.L. Pistinner, D. Eichler, Self-inhibiting heat flux. Mon. Not. R. Astron. Soc. 301, 49 (1998)

    ADS  Google Scholar 

  • V. Ptuskin, Cosmic ray acceleration by long-wave turbulence. Sov. Astr. Lett. 14, 255 (1988)

    ADS  Google Scholar 

  • R.E. Pudritz, J. Silk, The origin of magnetic fields and primordial stars in protogalaxies. Astrophys. J. 342, 650 (1989)

    ADS  Google Scholar 

  • E. Quataert, Buoyancy instabilities in weakly magnetized low-collisionality plasmas. Astrophys. J. 673, 758 (2008)

    ADS  Google Scholar 

  • A.B. Rechester, M.N. Rosenbluth, Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 38 (1978)

    ADS  Google Scholar 

  • M.J. Rees, The origin and cosmogonic implications of seed magnetic fields. Quart. J. R. Astron. Soc. 28, 197 (1987)

    ADS  Google Scholar 

  • M.J. Rees, G. Setti, Model for the evolution of extended radio sources. Nature 219, 127 (1968)

    ADS  Google Scholar 

  • Y. Rephaeli, Relativistic electrons in the intracluster space of clusters of galaxies: the hard X-ray spectra and heating of the gas. Astrophys. J. 227, 364 (1979)

    ADS  Google Scholar 

  • Y. Rephaeli, Magnetic fields in clusters of galaxies. Comments Astrophys. 12, 265 (1988)

    ADS  Google Scholar 

  • F. Rincon, Dynamo theories. J. Plasma. Phys. 85, 205850401 (2019)

    Google Scholar 

  • F. Rincon, F. Califano, A.A. Schekochihin, F. Valentini, Turbulent dynamo in a collisionless plasma. Proc. Nat. Acad. Sci. 113, 3950 (2016)

    ADS  Google Scholar 

  • M.A. Riquelme, E. Quataert, D. Verscharen, Particle-in-cell simulations of continuously driven mirror and ion cyclotron instabilities in high beta astrophysical and heliospheric plasmas. Astrophys. J. 800, 27 (2015)

    ADS  Google Scholar 

  • G.T. Roberg-Clark, J.F. Drake, C.S. Reynolds, M. Swisdak, Suppression of electron thermal conduction in the high β intracluster medium of galaxy clusters. Astrophys. J. Lett. 830, L9 (2016)

    ADS  Google Scholar 

  • G.T. Roberg-Clark, J.F. Drake, C.S. Reynolds, M. Swisdak, Suppression of electron thermal conduction by whistler turbulence in a sustained thermal gradient. Phys. Rev. Lett. 120, 035101 (2018)

    ADS  Google Scholar 

  • M.N. Rosenbluth, Stability of the pinch. LANL Report LA-2030 (1956)

    Google Scholar 

  • A.A. Ruzmaikin, D.D. Sokolov, The magnetic field in mirror-invariant turbulence. Sov. Astron. Lett. 7, 388 (1981)

    ADS  Google Scholar 

  • D. Ryu, H. Kang, P.L. Biermann, Cosmic magnetic fields in large scale filaments and sheets. Astron. Astrophys. 335, 19 (1998)

    ADS  Google Scholar 

  • R. Santos-Lima, E.M. de Gouveia Dal Pino, G. Kowal, D. Falceta-Gonçalves, A. Lazarian, M.S. Nakwacki, Magnetic field amplification and evolution in turbulent collisionless magnetohydrodynamics: an application to the intracluster medium. Astrophys. J. 781, 84 (2014)

    Google Scholar 

  • C. Sarazin, The energy spectrum of primary cosmic ray electrons in clusters of galaxies and inverse Compton emission. Astrophys. J. 520, 529 (1999)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.A. Boldyrev, R.M. Kulsrud, Spectra and growth rates of fluctuating magnetic fields in the kinematic dynamo theory with large magnetic Prandtl numbers. Astrophys. J. 567, 828 (2002)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, Turbulence, magnetic fields, and plasma physics in clusters of galaxies. Phys. Plasmas. 13, 056501 (2006)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, G.W. Hammett, J.L. Maron, J.C. McWilliams, A model of nonlinear evolution and saturation of the turbulent MHD dynamo. New J. Phys. 4, 84 (2002a)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, J. Maron, L. Malyshkin, Structure of small-scale magnetic fields in the kinematic dynamo theory. Phys. Rev. E 65, 016305 (2002b)

    ADS  MathSciNet  Google Scholar 

  • A.A. Schekochihin, J.L. Maron, S.C. Cowley, J.C. McWilliams, The small-scale sturcture of magnetohydrodynamic turbulence in large magnetic Prandtl numbers. Astrophys. J. 576, 806 (2002c)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, S.F. Taylor, J.L. Maron, J.C. McWilliams, Simulations of small-scale turbulent dynamo. Astrophys. J. 612, 276 (2004)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, R.M. Kulsrud, G.W. Hammett, P. Sharma, Plasma instabilities and magnetic field growth in clusters of galaxies. Astrophys. J. 629, 139 (2005)

    ADS  Google Scholar 

  • R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Berlin/Heidelberg/New York, 2002)

    Google Scholar 

  • R. Schlickeiser, P.K. Shukla, Cosmological magnetic field generation by the Weibel instability. Astrophys. J. Lett. 599, L57 (2003)

    ADS  Google Scholar 

  • A. Seta, P.J. Bushby, A. Shukurov, T.S. Wood, The saturation mechanism of the fluctuation dynamo at PrM ≥ 1. Phys. Rev. Fluids 5, 043702 (2020). arXiv:2003.07997

    Google Scholar 

  • J. Skilling, I. McIvor, J.A. Holmes, On cosmic ray diffusion and anisotropy. Mon. Not. R. Astron. Soc. 167, 87 (1974)

    Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Mirror instability. I. Physical mechanism of linear instability. J. Geophys. Res. 98, 9181 (1993)

    ADS  Google Scholar 

  • A. Spitkovsky, On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophys. J. Lett. 673, L39 (2008)

    ADS  Google Scholar 

  • L. Spitzer Jr., Physics of Fully Ionized Gases (Interscience, New York, 1962)

    Google Scholar 

  • J. Squire, M.W. Kunz, E. Quataert, A.A. Schekochihin, Kinetic simulations of the interruption of large-amplitude shear-Alfvén waves in a high-beta plasma. Phys. Rev. Lett. 119, 155101 (2017)

    ADS  Google Scholar 

  • J. Squire, E. Quataert, A.A. Schekochihin, A stringent limit on the amplitude of Alfvénic perturbations in high-beta low-collisionality plasmas. Astrophys. J. Lett. 830, L25 (2016)

    ADS  Google Scholar 

  • J. Squire, A.A. Schekochihin, E. Quataert, M.W. Kunz, Magneto-immutable turbulence in weakly collisional plasmas. J. Plasma. Phys. 85, 905850114 (2019)

    Google Scholar 

  • D.A. St-Onge, M.W. Kunz, Fluctuation dynamo in a collisionless, weakly magnetized plasma. Astrophys. J. Lett. 863, L25 (2018)

    ADS  Google Scholar 

  • D.A. St-Onge, M.W. Kunz, J. Squire, A.A. Schekochihin, Fluctuation dynamo in a weakly collisional plasma. J. Plasma. Phys. 86, 905860503 (2020)

    Google Scholar 

  • C. Stuardi, A. Bonafede, L. Lovisari, P. Domínguez-Fernández, F. Vazza, M. Brüggen, R.J. van Weeren, F. de Gasperin, The intracluster magnetic field in the double relic galaxy cluster Abell 2345. Mon. Not. R. Astron. Soc. 502, 2518 (2021)

    ADS  Google Scholar 

  • K. Subramanian, The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016)

    ADS  Google Scholar 

  • K. Subramanian, Unified treatment of small- and large-scale dynamos in helical turbulence. Phys. Rev. Lett. 83, 2957 (1999)

    ADS  Google Scholar 

  • K. Subramanian, D. Narasimha, S.M. Chitre, Thermal generation of cosmological seed magnetic fields in ionization fronts. Mon. Not. R. Astron. Soc. 271, L15 (1994)

    ADS  Google Scholar 

  • C. Sugawara, M. Takizawa, K. Nakazawa, Suzaku observation of the radio halo cluster Abell 2319: gas dynamics and hard X-ray properties. Publ. Astron. Soc. JPN 61, 1293 (2009)

    ADS  Google Scholar 

  • G.B. Taylor, N.E. Gugliucci, A.C. Fabian, J.S. Sanders, G. Gentile, S.W. Allen, Magnetic fields in the centre of the Perseus cluster. Astron. Astrophys. 368, 1500 (2006)

    Google Scholar 

  • V. Vacca, M. Murgia, F. Govoni, L. Feretti, G. Giovannini, R.A. Perley, G.B. Taylor, The intracluster magnetic field power spectrum in A2199. Astron. Astrophys. 540, A38 (2012)

    ADS  Google Scholar 

  • A.J. van Marle, On the influence of supra-thermal particle acceleration on the morphology of low-Mach high-β shocks. Mon. Not. R. Astron. Soc. 496, 3198 (2020)

    ADS  Google Scholar 

  • R.J. van Weeren, G. Brunetti, M. Brüggen, F. Andrade-Santos, G.A. Ogrean, W.L. Williams, H.J.A. Röttgering et al., LOFAR, VLA, and Chandra observations of the toothbrush galaxy cluster. Astrophys. J. 818, 204 (2016)

    ADS  Google Scholar 

  • R.J. van Weeren, F. de Gasperin, H. Akamatsu, M. Brüggen, L. Feretti, H. Kang, A. Stroe et al., Diffuse radio emission from galaxy clusters. Space Sci. Rev. 215, 16 (2019)

    ADS  Google Scholar 

  • R.J. van Weeren, H. Röttgering, M. Brüggen, M. Hoeft, Particle acceleration on megaparsec scales in a merging galaxy cluster. Science 330, 347 (2011)

    Google Scholar 

  • R.J. van Weeren, H.J.A. Röttgering, H.T. Intema, L. Rudnick, M. Brüggen, M. Hoeft, J.B.R. Oonk, The toothbrush-relic: evidence for a coherent linear 2-Mpc scale shock wave in a massive merging galaxy cluster? Astron. Astrophys. 546, A124 (2012)

    Google Scholar 

  • C. Vogt, T.A. Enßlin, A Bayesian view on Faraday rotation maps Seeing the magnetic power spectra in galaxy clusters. Astron. Astrophys. 434, 67 (2005)

    ADS  Google Scholar 

  • E.S. Weibel, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83 (1959)

    ADS  Google Scholar 

  • L.M. Widrow, Origin of Galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002)

    ADS  Google Scholar 

  • R. Xu, M.W. Kunz, Linear Vlasov theory of a magnetised, thermally stratified atmosphere. J. Plasma. Phys. 82, 905820507 (2016)

    Google Scholar 

  • XRISM Science Team, Science with the X-ray Imaging and Spectroscopy Mission (XRISM) (2020). arXiv:2003.04962

    Google Scholar 

  • H. Yan, A. Lazarian, Scattering of cosmic rays by magnetohydrodynamic interstelllar turbulence. Phys. Rev. Lett. 89, 281102 (2002)

    ADS  Google Scholar 

  • Y.B. Zel’dovich, The magnetic field in the two-dimensional motion of a conducting turbulent liquid. Sov. J. Exp. Theor. Phys. 4, 460 (1957)

    Google Scholar 

  • Y.B. Zel’dovich, A.A. Ruzmaikin, S.A. Molchanov, D.D. Sokolov, Kinematic dynamo problem in a linear velocity field. J. Fluid. Mech. 144, 1 (1984)

    ADS  Google Scholar 

  • M. Zhou, V. Zhdankin, M.W. Kunz, N.F. Loureiro, D.A. Uzdensky, Spontaneous magnetization of collisionless plasma. Proc. Nat. Acad. Soc. 119, e2119831119 (2022)(in press; arXiv:2110.01134)

    Google Scholar 

  • I. Zhuravleva, E.M. Churazov, A.A. Schekochihin, E.T. Lau, E. Nagai, M. Gaspari, S.W. Allen et al., The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations. Astrophys. J. Lett. 788, L13 (2014b)

    ADS  Google Scholar 

  • I. Zhuravleva, E.M. Churazov, P. Arevalo, A.A. Schekochihin, S.W. Allen, A.C. Fabian, W.R. Forman et al., Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum. Mon. Not. R. Astron. Soc. 450, 4184 (2015)

    ADS  Google Scholar 

  • I. Zhuravleva, E.M. Churazov, A.A. Schekochihin, S.W. Allen, A. Vikhlinin, N. Werner, Suppressed effective viscosity in the bulk intergalactic plasma. Nat. Astron. 3, 832 (2018)

    ADS  Google Scholar 

  • J.A. ZuHone, M.W. Kunz, M. Markevitch, J.M. Stone, V. Biffi, The effect of anisotropic viscosity on cold fronts in galaxy clusters. Astrophys. J. 798, 90 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kunz, M.W., Jones, T.W., Zhuravleva, I. (2024). Plasma Physics of the Intracluster Medium. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-19-6960-7_125

Download citation

Publish with us

Policies and ethics