Skip to main content

Photocatalytic Nitrogen Fixation on Semiconductor Materials: Fundamentals, Latest Advances, and Future Perspective

  • Chapter
  • First Online:
Photocatalytic Activities for Environmental Remediation and Energy Conversion

Abstract

Photocatalysis has recently gained much scientific attention as a possible sustainable ammonia manufacture approach as an alternative to the regular Haber–Bosch process. One of the most critical problems for boosting conversion of solar to ammonia efficiency is the design of efficient photocatalysts. The bismuth-based photocatalytic for the reduction of nitrogen to ammonia has been the subject of extensive and promising study in recent years. Our study mainly summarized and discussed the recent advanced in photocatalytic nitrogen reduction to produce ammonia based on bismuth-containing semiconductors and related work. Photocatalysis using heterojunctions has recently surfaced as a possible solution to several environmental and energy issues, including nitrogen reduction to ammonia. The heterojunction photocatalysts offer the advantage of spatially separated photogenerated charge carrier and simultaneously preserving significant oxidation and reduction potentials of individual components, enabling light harvesting. The essential ideas of photocatalysis heterojunctions, the nitrogen reduction reaction mechanism, to ammonia production techniques, and the existing advantages in heterostructure and types heterostructures of photocatalysts for nitrogen reduction to ammonia are the main discussed in this chapter. Finally, key issues and promises for the specific topic of heterostructures photocatalytic nitrogen fixation are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu Z, Saji SE, Langley J, Lin Y, Xie Z, Yang K, Bao L, Sun Y, Zhang S, Ng YH, Song L, Cox N, Yin Z (2021) Selective N2/H2O adsorption ointo 2D amphiphilic amorphous photocatalysts for ambient gas-phase nitrogen fixation. Appl Catal B: Environ 294:120240

    Google Scholar 

  2. Liu X, Luo Y, Ling C, Shi Y, Zhan G, Li H, Gu H, Wei K, Guo F, Ai Z, Zhang L (2022) Rare earth La single atoms supported MoO3-x for efficient photocatalytic nitrogen fixation. Appl Catal B: Environ 301:120766

    Google Scholar 

  3. Chena X, Zhang X, Lia Y-H, Qia M-Y, Lia J-Y, Tang Z-R, Zhou Z, Xua Y-J (2021) Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation, Appl Catal B: Environ 281:119516

    Google Scholar 

  4. Mohebinia M, Wu C, Yang G, Dai S, Hakimian A, Tong T, Ghasemi H, Wang Z, Wang D, Ren Z, Bao J (2021) Ultrathin bismuth oxyiodide nanosheets for photocatalytic ammonia generation from nitrogen and water under visible to near-infrared Light. Mater Today Phys 16:100293

    Article  CAS  Google Scholar 

  5. Li X, Sun X, Zhang L, Suna S, Wang W (2018) Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4. J Mater Chem A 6:3005

    Article  CAS  Google Scholar 

  6. Sun S, An Q, Wang W, Zhang L, Liu J, Goddard WA (2017) Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. Mater Chem A 5:201

    Google Scholar 

  7. Yang J (2018) Progress of metal oxide (sulfide)-based photocatalytic materials for reducing nitrogen to ammonia. Hindawi J Chem 2018, Article ID 3286782, 8

    Google Scholar 

  8. Ren W, Mei Z, Zheng S, Li S, Zhu Y, Zheng J, Lin Y, Chen H, Gu M, Pan F (2020) Wavelength-dependent solar N2 fixation iinto ammonia and nitrate in pure water. AAAS Res 2020, Article ID 3750314, 12

    Google Scholar 

  9. Hao D, Ren J, Wang Y, Arandiyan H, Garbrecht M, Bai X, Shon HK, Wei W, Ni B-J (2021) A green synthesis of Ru modified g-C3N4 nanosheets for enhanced photocatalytic ammonia synthesis. AAAS Energy Mater Adv 2021, Article ID 9761263, 12

    Google Scholar 

  10. Bian S, Wen M, Wang J, Yang N, Chu PK, Yu X-F (2020) Edge-rich black phosphorus for photocatalytic nitrogen fixation. J Phys Chem Lett 11:1052−1058

    Google Scholar 

  11. Vu M-H, Sakar M, Do T-O (2018) Insights into the recent progress and advanced materials for photocatalytic nitrogen fixation for ammonia (NH3) production. MDPI, Catals 8:621

    Google Scholar 

  12. Sridharan K, Shenoy S, Girish Kumar S, Terashima C, Fujishima A, Pitchaimuthu S (2021) Advanced two-dimensional heterojunction photocatalysts of stoichiometric and non-stoichiometric bismuth oxyhalides with graphitic carbon nitride for sustainable energy and environmental applications. Catalysts 11:426

    Google Scholar 

  13. Conte F, Pellegatta V, Tripodi A, Ramis G, Rossetti I (2021) Photo-oxidation of ammonia to molecular nitrogen in water under UV Vis and Sunlight Irradiation. Catalysts 11:975

    Article  CAS  Google Scholar 

  14. Han Q, Jiao H, Xiong L, Tang J (2021) Progress and challenges in photocatalytic ammonia synthesis. Mater Adv 2:564

    Article  CAS  Google Scholar 

  15. Zhang S, He Z, Li X, Zhang J, Zang Q, Wang S (2020) Building heterogeneous nanostructures for photocatalytic ammonia decomposition. Nanoscale Adv 2:3610

    Google Scholar 

  16. Sun S, An Q, Wang W, Zhang L, Liu J, Goddard WA (2017) Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J Mater Chem A 5:201

    Google Scholar 

  17. Ali H, Masar M, Guler AC, Urbanek M, Machovsky M, Kuritka I. Heterojunction-based photocatalytic nitrogen fixation: principles and current progress. https://doi.org/10.1039/d1na00565k

  18. Li P, Zhou Z, Wang Q, Guo M, Chen S, Low J, Long R, Liu W, Ding P, Wu Y, Xiong Y (2020) Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. J Am Chem Soc 142:12430−12439

    Google Scholar 

  19. Li H, Shang J, Ai Z, Zhang L (2015) Efficient visible light nitrogen fixation with biobr nanosheets of oxygen vacancies on the exposed 001 facets. J Am Chem Soc 137:6393–6399

    Article  CAS  Google Scholar 

  20. Liu Q, Yuan J, Gan Z, Liu C, Li J, Liang Y, Chen R (2021) Photocatalytic N2 reduction: uncertainties in the determination of ammonia production. ACS Sustain Chem Eng 9:560–568

    Article  CAS  Google Scholar 

  21. Hao Q, Liu C, Jia G, Wang Y, Arandiyan H, Weia W, Ni B-J (2020) Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects. Mater Horiz 7:1014

    Article  CAS  Google Scholar 

  22. Vu M-H, Nguyen C-C, Do T-O (2020) Synergistic effect of Fe doping and plasmonic Au nanoparticles on W18O49 nanorods for enhancing photoelectrochemical nitrogen reduction. ACS Sustain Chem Eng 8:12321−12330

    Google Scholar 

  23. Yaoa X, Zhang W, Huanga J, Dua Z, Honga X, Chenc X, Hua X, Wang X (2020) Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method. Appl Catal A 601:117647

    Article  Google Scholar 

  24. Sun B, Liang Z, Qian Y, Xu X, Han Y, Tian J (2020) Sulfur vacancy-rich O‑doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS. ACS Appl Mater Interf 12:7257−7269

    Google Scholar 

  25. Yu X, Qiu H, Wang Z, Wang B, Meng Q, Sun S, Tang Y, Zhao K (2021) Constructing the Z-scheme TiO2/Au/BiOI nanocomposite for enhanced photocatalytic nitrogen fixation. Appl Surf Sci 556:149785

    Google Scholar 

  26. Zhang K, Ai Z, Huang M, Shi D, Shao Y, Hao X, Zhang B, Wua Y (2021) Type II cuprous oxide/graphitic carbon nitride p-n heterojunctions for enhanced photocatalytic nitrogen fixation. J Catal 395:273–281

    Article  CAS  Google Scholar 

  27. Zhang Y, Di J, Ding P, Zhao J, Gu K, Chen X, Yan C, Yin S, Xia J, Li H (2019) Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. J Colloid Interf Sci 553:530–539

    Google Scholar 

  28. Xue Y, Guo Y, Liang Z, Cui H, Tian J (2019) Porous g-C3N4 with nitrogen defects and cyano groups for excellent photocatalytic nitrogen fixation without co-catalysts. J Colloid Interf Sci 556:206–213

    Article  CAS  Google Scholar 

  29. Fei T, Yu L, Liu Z, Song Y, Xu F, Mo Z, Liu C, Deng J, Ji H, Cheng M, Lei Y, Xu H, Li H (2019) Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation. J Colloid Interf Sci 557:498–505

    Google Scholar 

  30. Feng Y, Zhang Z, Zhao K, Lin S, Li H, Gao X (2021) Photocatalytic nitrogen fixation: oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. J Colloid Interf Sci 583:499–509

    Article  CAS  Google Scholar 

  31. Zhang W, Xing P, Zhang J, Chen L, Yang J, Hu X, Zhao L, Wu Y, He Y (2021) Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. J Colloid Interf Sci 590:548–560

    Google Scholar 

  32. Song M, Wang L, Li J, Sun D, Guan R, Zhai H, Gao X, Li X, Zhao Z, Sun Z (2021) Defect density modulation of La2TiO5: an effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation. J Colloid Interf Sci 602:748–755

    Article  CAS  Google Scholar 

  33. Hu X, Zhang W, Yong Y, Xu Y, Wang X, Yao X (2020) One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance. Appl Surf Sci 510:145413

    Google Scholar 

  34. Kong Y, Lv C, Zhang C, Chen G (2020) Cyano group modified g-C3N4: Molten salt method achievement and promoted photocatalytic nitrogen fixation activity. Appl Surf Sci 515:146009

    Google Scholar 

  35. Qiu P, Xu C, Zhou N, Chen H, Jiang F (2018) Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with CeP bonds for excellent photocatalytic nitrogen fixation. Appl Catal B: Environ 221:27–35

    Google Scholar 

  36. Xiao C, Zhang L, Wang K, Wang H, Zhou Y, Wang W (2018) A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4. Appl Catal B 239:260–267

    Article  CAS  Google Scholar 

  37. Xu H, Wang Y, Dong X, Zheng N, Ma H, Zhang X (2019) Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Appl Catal B: Environ 257:117932

    Google Scholar 

  38. Shen Z-K, Cheng M, Yuan Y-J, Pei L, Zhong J, Guan J, Li X, Li Z-J, Bao L, Zhang X, Yu Z-T, Zou Z (2021) Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni2P-black phosphorus photocatalysts. Appl Catal B: Environ 295:120274

    Google Scholar 

  39. Lianga C, Niub H-Y, Guoa H, Niua C-G, Huangc D-W, Yanga Y-Y, Liua H-Y, Shaoa B-B, Fenga H-P (2020) Insight iinto photocatalytic nitrogen fixation on graphitic carbon nitride: defect-dopant strategy of nitrogen defect and boron dopant. Chem Eng J 396:125395

    Article  Google Scholar 

  40. Zhang G, Sewell CD, Zhang P, Mi H, Lin Z (2020) Nanostructured photocatalysts for nitrogen fixation. Nano Energy 71:104645

    Article  CAS  Google Scholar 

  41. Xin Y, Wang S, Yuan H, Hou T, Zhu W, Liu Y, Yao Y, Zhang E, Liang S, Wang L (2021) Atomic-level insights iinto the activation of nitrogen via hydrogen-bond interaction toward nitrogen photofixation. Chem. Elsevier Inc. 7:2118–2136

    Google Scholar 

  42. Xu C, Qiu P, Li L, Chen H, Jiang F, Wang X (2018) Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation. ACS Appl Mater Interf 10:25321−25328

    Google Scholar 

  43. Liu Q-Y, Wang H-D, Tang R, Cheng Q, Yuan Y-J (2021) Rutile TiO2 nanoparticles with oxygen vacancy for photocatalytic nitrogen fixation. ACS Appl Nano Mater 4:8674–8679

    Article  CAS  Google Scholar 

  44. Medford AJ, Hatzell MC (2017) Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal 7:2624−2643

    Google Scholar 

  45. Shi R, Zhao Y, Waterhouse GIN, Shuai Zhang, and Tierui Zhang, Defect engineering in photocatalytic nitrogen fixation. ACS Catal 9:9739−9750

    Google Scholar 

  46. Shang S, Xiong W, Yang C, Johannessen B, Liu R, Hsu H-Y, Gu Q, Leung MKH, Shang J (2021) Atomically dispersed iron metal site in a porphyrin-based metal−organic framework for photocatalytic nitrogen fixation. ACS Nano 15:9670−9678

    Google Scholar 

  47. Li J, Wang D, Guan R, Zhang Y, Zhao Z, Zhai H, Sun Z (2020) Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain Chem Eng 8:18258–18265

    Article  CAS  Google Scholar 

  48. Comer BM, Medford AJ (2018) Analysis of photocatalytic nitrogen fixation on Rutile TiO2(110). ACS Sustain Chem Eng 6:4648–4660

    Article  CAS  Google Scholar 

  49. Gao X, Wen Y, Qu D, An L, Luan S, Jiang W, Zong X, Liu X, Sun Z (2018) Interference effect of alcohol on Nessler’s reagent in photocatalytic nitrogen fixation. ACS Sustain Chem Eng 6:5342−5348

    Google Scholar 

  50. Mou H, Wang J, Zhang D, Yu D, Chen W, Wang D, Mu T (2019) A one-step deep eutectic solvent assisted synthesis of carbon nitride/metal oxide composites for photocatalytic nitrogen fixation. J Mater Chem A 7:5719

    Google Scholar 

  51. Mao C, Wang J, Zou Y, Li H, Zhan G, Li J, Zhao J, Zhang L (2019) Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chem 21:2852

    Article  CAS  Google Scholar 

  52. Zhang G, Yang X, He C, Zhang P, Mi H (2020) Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation. J Mater Chem A 8:334

    Article  CAS  Google Scholar 

  53. Huang Y, Zhang N, Wu Z, Xie X (2020) Artificial nitrogen fixation over bismuth-based photocatalysts: fundamentals and future perspectives. J Mater Chem A 8:4978

    Google Scholar 

  54. Hao D, Liu C, Xu X, Kianinia M, Aharonovich I, Bai X, Liu X, Chen Z, Wei W, Jiae G, Ni B-J (2020) Surface defect-abundant one-dimensional graphitic carbon nitride nanorods boost photocatalytic nitrogen fixation. New J Chem 44:20651

    Google Scholar 

  55. Gao W, Li X, Zhang X, Su S, Luo S, Huang R, Jing Y, Luo M (2021) Photocatalytic nitrogen fixation of metal–organic frameworks (MOFs) excited by ultraviolet light: insights into the nitrogen fixation mechanism of missing metal cluster or linker defects. Nanoscale 13:7801

    Google Scholar 

  56. Wei Y, Jiang W, Liu Y, Bai X, Hao D, Ni B-J. Recent advances in photocatalytic nitrogen fixation and beyond. https://doi.org/10.1039/d2nr00198e

  57. Yan Y, Yang H, Yi Z, Xian T (2019) NaBH4-reduction induced evolution of Bi nanoparticles from BiOCl nanoplates and construction of promising Bi@BiOCl hybrid photocatalysts. Catalysts 9:795. https://doi.org/10.3390/catal9100795

    Article  CAS  Google Scholar 

  58. Xie T, Hu J, Yang J, Liu C, Xu L, Wang J, Peng Y, Liu S, Yin X, Lu Y (2019) Visible-light-driven photocatalytic activity of magnetic BiOBr/SrFe12O19 nanosheets. Nanomaterials 9:735

    Google Scholar 

  59. Bu T-A, Hao Y-C, Gao W-Y, Su X, Chen L-W, Zhang N, Yin A-X (2019) Promoting photocatalytic nitrogen fixation with alkali metal cations and plasmonic nanocrystals. Nanoscale 11:10072

    Google Scholar 

  60. Lee J, Tan L-L, Chai S-P (2021) Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale 13:7011

    Article  CAS  Google Scholar 

  61. Lianga C, Niub H-Y, Guoa H, Niua C-G, Yanga Y-Y, Liu H-Y, Tanga W-W, Fenga H-P (2021) Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem Eng J 406:126868

    Google Scholar 

  62. Zeng L, Zhe F, Wang Y, Zhang Q, Zhao X, Hub X, Wu Y, He Y (2019) Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. J Colloid Interf Sci 539:563–574

    Google Scholar 

  63. Li X, He C, Zuo S, Yan X, Dai D, Zhang Y, Yao C (2019) Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: effect of upconversion and fluorine vacancy. Solar Energy 191:251–262

    Google Scholar 

  64. Ye L, Han C, Ma Z, Leng Y, Li J, Ji X, Bi D, Xie H, Huang Z (2017) Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem Eng J 307:311–318

    Google Scholar 

  65. Gao K, Zhang C, Zhang Y, Zhou X, Gu S, Zhang K, Wang X, Song X (2022) Oxygen vacancy engineering of novel ultrathin Bi12O17Br2 nanosheets for boosting photocatalytic N2 reduction. J Colloid Interf Sci 614:12–23

    Google Scholar 

  66. Ren X, Wu K, Qin Z, Zhao X, Yang H (2019) The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. J Alloys Comp 788:102e109

    Google Scholar 

  67. Yao X, Zhang W, Huang J, Du Z, Hong X, Chen X, Hu X, Wang X (2020) Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method. Appl Catal A, Gen 601:117647

    Google Scholar 

  68. Kong XY, Ng B-J, Tan KH, Chen X, Wang H, Mohamed AR, Chai S-P (2018) Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. Catal Today 314:20–27

    Google Scholar 

  69. Zhang W, Xing P, Zhang J, Chen L, Yang J, Hu X, Zhao L, Wub Y, He Y (2021) Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. J Colloid Interf Sci 590:548–560

    Google Scholar 

  70. Mao C, Cheng H, Tian H, Li H, Wen-Jing Xiao HuXu, Zhao J, Zhang L (2018) Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl Catal B 228:87–96

    Article  CAS  Google Scholar 

  71. Liang C, Niu H-Y, Guo H, Niu C-G, Yang Y-Y, Liu H-Y, Tang W-W, Feng H-P (2021) Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem Eng J 406:126868

    Google Scholar 

  72. Xiao C, Zhang L, Wang K, Wang H, Zhou Y, Wang W (2018) A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4. Appl Catal B: Environ 239:260–267

    Google Scholar 

  73. Lina Q, Li Y-H, Qi M-Y, Li J-Y, Tang Z-R, Anpo M, Yamada YMA, Xu Y-J (2020) Photoredox dual reaction for selective alcohol oxidation and hydrogen evolution over nickel surface-modified ZnIn2S4. Appl Catal B: Environ 271:118946

    Google Scholar 

  74. Wang G, Huo T, Deng Q, Yu F, Xia Y, Li H, Hou W (2022) Surface-layer bromine doping enhanced generation of surface oxygen vacancies in bismuth molybdate for efficient photocatalytic nitrogen fixation. Appl Catal B: Environ 310:121319

    Google Scholar 

  75. Sun B, Qian Y, Liang Z, Guo Y, Xue Y, Tian J, Cui H (2019) Oxygen vacancy-rich BiO2-x ultra-thin nanosheet for efficient full-spectrum responsive photocatalytic oxygen evolution from water splitting. Sol Energy Mater Sol Cells 195:309–317

    Article  CAS  Google Scholar 

  76. Baia Y, Baia H, Qu K, Wang F, Guan P, Xu D, Fan W, Shi W (2019) In-situ approach to fabricate BiOI photocathode with oxygen vacancies: understanding the N2 reduced behavior in photoelectrochemical system. Chem Eng J 362:349–356

    Google Scholar 

  77. Hou J, Jiang T, Wang X, Zhang G, Zou J-J, Cao C (2021) Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties. J Clean Prod 287:125072

    Article  CAS  Google Scholar 

  78. Xiong J, Song P, Di J, Li H (2020) Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chem Eng J 402:126208

    Article  CAS  Google Scholar 

  79. Li G, Yang W, Gao S, Shen Q, Xue J, Chen K, Li Q (2021) Creation of rich oxygen vacancies in bismuth molybdate nanosheets to boost the photocatalytic nitrogen fixation performance under visible light illumination. Chem Eng J 404:127115

    Google Scholar 

  80. Xue X, Chen H, Xiong Y, Chen R, Jiang M, Fu G, Xi Z, Zhang XL, Ma J, Fang W, Jin Z (2021) Near-infrared-responsive photo-driven nitrogen fixation enabled by oxygen vacancies and sulfur doping in black TiO2−xSy nanoplatelets. ACS Appl Mater Interf 13:4975−4983

    Google Scholar 

  81. Xue X, Chen R, Chen H, Hu Y, Ding Q, Liu Z, Ma L, Zhu G, Zhang W, Yu Q, Liu J, Ma J, Jin Z (2018) Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett 18:7372−7377

    Google Scholar 

  82. Liu Y, Su Y, Quan X, Fan X, Chen S, Yu H, Zhao H, Zhang Y, Zhao J (2018) Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal 8:1186−1191

    Google Scholar 

  83. Xu Y, Fu H, Zhao L, Jian L, Liang Q, Xiao X (2021) Insight iinto facet-dependent photocatalytic H2O2 production on BiOCl nanosheets. New J Chem 45:3335

    Google Scholar 

  84. Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T (2017) Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J Am Chem Soc 139:10929–10936

    Article  CAS  Google Scholar 

  85. Zhang N, Jalil A, Wu D, Chen S, Liu Y, Gao C, Ye W, Qi Z, Ju H, Wang C, Wu X, Song L, Zhu J, Xiong Y (2018) Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar driven nitrogen fixation. J Am Chem Soc 140:9434−9443

    Google Scholar 

  86. Zhang K, Ai Z, Huang M, Shi D, Shao Y, Hao X, Zhang B, Wu Y (2021) Type II cuprous oxide/graphitic carbon nitride p-n heterojunctions for enhanced photocatalytic nitrogen fixation. J Catal 395:273–281

    Google Scholar 

  87. Song M, Wang L, Li J, Sun D, Guan R, Zhai H, Gao X, Li X, Zhao Z, Sun Z (2021) Defect density modulation of La2TiO5: an effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation. J Colloid Interf Sci 602:748–755

    Article  CAS  Google Scholar 

  88. Donga S, Liua X, Tian G, Wang Y, Jin G, Zhao Y, Sun J, Fan M (2021) Surface oxygen vacancies modified Bi2MoO6 double-layer spheres: Enhanced visible LED light photocatalytic activity for ciprofloxacin degradation. J Alloys Comp 892:162217

    Google Scholar 

  89. Huang Y, Zhang N, Wu Z, Xie X (2020) Artificial nitrogen fixation over bismuth-based photocatalysts: fundamentals and future perspectives. J Mater Chem A 8:4978

    Google Scholar 

  90. Shi YB, Li H, Mao C, Zhan G, Yang Z, Ling C, Wei K, Liu X, Ai Z, Zhang L. Manipulating excitonic effects in layered bismuth oxyhalides for photocatalysis. https://doi.org/10.1021/acsestengg.1c00466

  91. Gao X, Shang Y, Liu L, Fu F (2019) Chemisorption-enhanced photocatalytic nitrogen fixation via 2D ultrathin p–n heterojunction AgCl/d-Bi2O3 nanosheets. J Catal 371:71–80

    Google Scholar 

  92. Raizada P, Kumar A, Hasija V, Singh P, Thakur VK, Khan AAP (2021) An overview of converting reductive photocatalyst into all solid-state and direct Z-scheme system for water splitting and CO2 reduction. J Indus Eng Chem 93:1–27

    Google Scholar 

  93. Xiao C, Zhang L, Wang K, Wang H, Y Zhou, Wang W (2018) A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4. Appl Catal B: Environ 239:260–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merga Hailemariam Urgesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urgesa, M.H. et al. (2023). Photocatalytic Nitrogen Fixation on Semiconductor Materials: Fundamentals, Latest Advances, and Future Perspective. In: Abdullah, H. (eds) Photocatalytic Activities for Environmental Remediation and Energy Conversion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-6748-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6748-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6747-4

  • Online ISBN: 978-981-19-6748-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics