Skip to main content

Mass Production Methods, Markets, and Applications of Chitosan and Chitin Oligomer as a Biostimulant

  • Chapter
  • First Online:
Industrial Microbiology Based Entrepreneurship

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 42))

Abstract

Global organic food demand is increasing as consumers understand about the problems of the food grown under conventional farming. In the current situation, farmers are looking for alternatives to boost its productivity with minimal use of chemical fertilizers and pesticides. In this transition period, biostimulant plays a key role to increase nutrient uptake efficacy and boost plant yield. This chapter focuses on a specific biostimulant, i.e., chitosan and chito-oligomers, and their mass production methods and their pros and cons. Various applications of chitosan and chito-oligomers as biostimulant and crop protectant are also discussed. At the end, this chapter focuses on market demand of chitosan and chito-oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Pichtel J, Hayat S (2008) Plant-bacteria interactions. Strategies and techniques to promote plant growth. WILEY-VCH Verlag GmbH and Co., KGaA, Weinheim

    Book  Google Scholar 

  • Antaonio RSC, Fook BRPL, Fook MVL (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15(5):141

    Article  Google Scholar 

  • Augé R (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. https://doi.org/10.1007/s005720100097

    Article  Google Scholar 

  • Bakiyalakshmi SV, Valli V, Linu Swarnila DR (2016) Isolation and application of chitin and chitosan from crab shell. Int J Curr Microbial App Sci 3:91–99

    Google Scholar 

  • Behie SW, Bidochka MJ (2014) Nutrient transfer in plant-fungal symbioses. Trends Plant Sci 19:734–740

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant and Soil 383(1):3–41

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric 1:1–11. https://doi.org/10.1186/2196-5641-1-3

    Article  CAS  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Façanha AR (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78(4):457–466. https://doi.org/10.1016/j.chemosphere.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  • Casadidio C, Vargas Peregrina D, Rosa Gigliobianco M, Deng S (2019) Chitin and Chitosans: characteristics, eco-friendly processes and applications in cosmetics science. Mar Drugs 17(6):369

    Article  CAS  PubMed Central  Google Scholar 

  • Colla G, Cardarelli M, Bonini P, Rouphael Y (2017) Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 52:1214–1220. https://doi.org/10.21273/hortsci12200-17

    Article  CAS  Google Scholar 

  • da Silva MSRA, de Melo Silveira dos Santos B, Camilla SR et al (2021) Humic substances in combination with plant growth-promoting bacteria as an alternative for sustainable agriculture. Front Microbiol 12:719653

    Article  PubMed  PubMed Central  Google Scholar 

  • Deliopoulos T, Kettlewell PS, Hare MC (2010) Fungal disease suppression by inorganic salts: a review. Crop Prot 29(10):1059–1075, ISSN 0261-2194. https://doi.org/10.1016/j.cropro.2010.05.011

    Article  CAS  Google Scholar 

  • Du Jardin P (2012) The science of plant biostimulants – a bibliographic analysis, ad hoc study report. European Commission, Brussels. Available online at: http://hdl.handle.net/2268/169257

    Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  Google Scholar 

  • Escudero N, Lopez-Maya F, Ghahremani Z, Zavala-Gonzalez EA, Alaguero-Cordovilla A, Ros-Ibañez C, Lacasa A, Sorribas FJ, Lopez-Liorca LV (2017) Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Front Plant Sci 8:1415

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadgey KK, Bahekar A (2017) Studies on extraction methods of chitin from crab shell and investigation of its mechanical properties. Int J Mech Eng Technol 8:220–231

    Google Scholar 

  • Gaffney JS, Marley NA, Clark SB (1996) Humic and fluvic acids and organic colloidal materials in the environment. United States

    Google Scholar 

  • Ghorbrl-Bellaaj O, Younes I, Maalej H, Hajji S, Nasri M (2012) Chitin extraction from shrimp shell waste using bacillus bacteria. Int J Biol Macromol 67:851–854

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Grand View Research, Inc. (2018) Biostimulants Market to be Worth $6.79 Billion by 2030

    Google Scholar 

  • Hahn T, Tafi E, Paul A, Salvia R, Falabella P, Zibek S (2020) Current state of chitin purification and chitosan production from insects. J Chem Technol Biotechnol 95:2775–2795

    Article  CAS  Google Scholar 

  • Hamdan IAA-H, Alhnon FJ, Hamdan AAA-H (2020) Extraction, characterization and bioactivity of chitosan from farms shrimps of Basra province by chemical method. J Phys Conf Ser 1660(1):12023

    Article  Google Scholar 

  • Hamel C, Plenchette C (2007) Mycorrhizae in crop production. The Haworth Press Inc., New York

    Book  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soilborne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek MB, Struszczyk-Swita K, Li X et al (2019) Enzymatic modifications of chitin, chitosan and chitooligosaccharides. Front Bioeng Biotechnol 7:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267

    Article  CAS  Google Scholar 

  • Khorrami M, Najafpour GD, Younesi H et al (2012) Production of chitin and chitosan from shrimp shell in batch culture of Lactobacillus plantarum. Chem Biochem Eng Q 26(3):217–223

    CAS  Google Scholar 

  • Kumar V, Soundararajan A, Kirubanandam S, Sudha PN, Sashikala S, Ajitha P (2018) Chitin and chitosan-the defence booster in agricultural field. In: Handbook of biopolymers. Jenny Stanford Publishing, New Delhi, pp 93–134

    Chapter  Google Scholar 

  • Mahmoud NS et al (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3:1–9

    Article  CAS  Google Scholar 

  • Malerba M, Cerana R (2016) Chitosan effects on plant system. Int J Mol Sci 17:1–15

    Article  Google Scholar 

  • Mooney PA, Van Staden J (1986) Algae and cytokinins. J Plant Physiol 123:1–2

    Article  CAS  Google Scholar 

  • Nardi S, Schiavon M, Francioso O (2021) Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 26(8):2256. https://doi.org/10.3390/molecules26082256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novikov V, Derkach S, Konovalova I (2020) Chitosan technology from crustacean shells of the northern seas. Life Sci:65–74

    Google Scholar 

  • Oh KT, Kim YJ, Nguyen et al (2007) Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem 42:1069–1074

    Article  CAS  Google Scholar 

  • Olaetxea M, De Hita D, Garcia CA, Fuentes M, Baigorri R, Mora V et al (2018) Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot-growth. Appl Soil Ecol 123:521–537. https://doi.org/10.1016/j.apsoil.2017.06.007

    Article  Google Scholar 

  • Pachapur VL, Guemiza K, Rouissi T, Sharma SJ, Brar SK (2016) Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J Chem Technol Biotechnol 91:2331–2339

    Article  CAS  Google Scholar 

  • Pal J, Verma HO, Kumar J et al (2014) Biological method of chitin extraction from shrimp waste an eco-friendly low-cost technology and its advanced application. Int J Fisheries Aquat Stud 1(6):104–107

    Google Scholar 

  • Pareek N, Vivekanand V, Agarwal P, Saroj S, Singh RP (2013) Bioconversion to chitosan: a two stage process employing chitin deacetylase from Penicillium oxalicum SAEM-51. Carbohydr Polym 96:417–425

    Article  CAS  PubMed  Google Scholar 

  • Pighinelli L et al (2019) Methods of chitin production a short review. Am J Biomed Sci Res 3(4):307–314

    Article  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Prameela K, Mohan M et al (2010) Bioremediation of shrimp biowaste by using natural probiotic for chitin and carotenoid production an alternative method to hazardous chemical method. Int J Appl Biol Pharmaceut Technol 1:903

    Google Scholar 

  • Puglisi E, Pascazio S, Suciu N, Cattani I, Fait G, Spaccini R et al (2013) Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J Geochem Explor 129:82–94. https://doi.org/10.1016/j.gexplo.2012.10.006

    Article  CAS  Google Scholar 

  • Rahman M, Mukta JA, Sabir AA, Gupta DR, Mohi-Ud-Din M, Hasanuzzaman M, Islam MT (2018) Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS One 13(9):e0203769

    Google Scholar 

  • Rama Rao K (1991) Effect of seaweed extract on Zyziphus mauratiana Lamk. J Indian Bot Soc 71:19–21

    Google Scholar 

  • Rao MS, Munoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54(6):808–813

    Article  CAS  PubMed  Google Scholar 

  • Renuka V, Rao CN, Elavarasan K, Zynudheen AA, Joseph TC (2019) Production and characterization of chitosan from shrimp shell waste of Parapeneopsis stylifera. Int J Curr Microbiol App Sci 8(11):2076–2083

    Article  CAS  Google Scholar 

  • Reshad RAI, Jishan TA, Chowdhury NN (2021) A brief review—chitosan and its broad applications. Available at SSRN 3842055

    Google Scholar 

  • Reys LL, Silva SS, Reis RL (2017) Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. Eur Polym J 95:232–240

    Article  CAS  Google Scholar 

  • Riofrio A, Alcivar T, Baykara H (2021) Environmental and economic viability of chitosan production in Guayas-Ecuador: a robust investment and life cycle analysis. ACS Omega 6(36):23038–23051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samar MM, El-Kalyoubi MH, Khalaf MM, Abd El-Rajik MM (2013) Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp waste by microwave technique. Ann Agric Sci 58(1):33–41

    Article  Google Scholar 

  • Santos VP, Marques NSS et al (2020) Review- seafood waste as attractive source of chitin and chitosan production and their application. Int J Mol Sci 21(12):4290

    Article  CAS  PubMed Central  Google Scholar 

  • Sastry KR, Shrivastva A, Venkateshwarlu G (2015) Assessment of current trends in R & D of chitin-based technologies in agricultural production-consumption systems using patent analytics

    Google Scholar 

  • Sharma HSS, Selby C, Martin T (2016) Physicochemical analyses of plant biostimulant formulations and characterization of commercial products by instrumental techniques. Chem Biol Technol Agric 3(1):1–17

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS, Futai K (2008) Mycorrhizae sustainable agriculture and forestry. Springer, Berlin

    Book  Google Scholar 

  • Teng WL, Khor E, Tan TK, Lim LY, Tan SC (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332(3):305–316

    Article  CAS  PubMed  Google Scholar 

  • Turan M, Köse C (2004) Seaweed extracts improve copper uptake of grapevine. Acta Agric Scand Sect B Soil Plant Sci 54(4):213–220

    CAS  Google Scholar 

  • Vaghela B, Kumar P, Rajput K, Meshram A, Joshi R (2020) Enhancement of biologically production of chitooligosaccharide from chitin waste though media optimizations. Biosci Biotechnol Res Commun 13(1):105–110

    Google Scholar 

  • van der Heijden MGA, Van Der Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Boller T, Wiemken A, Sanders IR (2004) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  Google Scholar 

  • Van Oosten M, Pepe O, Pascale S, Silletti S, Maggio A (2017) Review: the role of biostimulants and bioeffectors as alleviator of abiotic stress in crop plants. Chem Biol Technol Agric 4(1):1–12

    Google Scholar 

  • Verkleij FN (1992) Seaweed extracts in agriculture and horticulture: a review. Biol Agric Hortic 8:309–324

    Article  Google Scholar 

  • Vijai K, Demain, Arnold L (2010) Protein hydrolysates in biotechnology. Springer, Berlin

    Google Scholar 

  • Yadav M, Goswami P, Vivekanand V et al (2019) Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess 6(1):1–20

    Article  Google Scholar 

  • Yakhin OI, Lubyanov AA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Younes I, Rinaudo M (2015) Review- chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Fritschi FB, Mittler R (2021) Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci 26(6):588–599, ISSN 1360-1385. https://doi.org/10.1016/j.tplants.2021.02.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Schmidt RE (2000) Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci 40:1344–1349

    Article  CAS  Google Scholar 

  • Zhang X, Ervin EH, Schmidt ER (2003) Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Sci 43:952–956

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Korat, H. (2022). Mass Production Methods, Markets, and Applications of Chitosan and Chitin Oligomer as a Biostimulant. In: Amaresan, N., Dharumadurai, D., Cundell, D.R. (eds) Industrial Microbiology Based Entrepreneurship. Microorganisms for Sustainability, vol 42. Springer, Singapore. https://doi.org/10.1007/978-981-19-6664-4_17

Download citation

Publish with us

Policies and ethics