Skip to main content

Image Segmentation Using Structural SVM and Core Vector Machines

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 547))

  • 315 Accesses

Abstract

In this paper, we study the performance of two variants of support vector machines, namely structural support vector machines and core vector machines, on large-scale data. We have used image segmentation as a mechanism to test the classification abilities of these variants on large-scale data. The images are converted to numeric data using various filters, and the labels are generated using the available ground truth image segmentation mask.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.msri.org/people/members/eranb/.

  2. 2.

    http://chenlab.ece.cornell.edu/projects/touch-coseg/.

References

  1. Abe S (2005) Support vector machines for pattern classification, vol 2. Springer

    Google Scholar 

  2. Bādoiu M, Har-Peled S, Indyk P (2002) Approximate clustering via core-sets. In: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp 250–257

    Google Scholar 

  3. BakIr G, Hofmann T, Smola AJ, Schölkopf B, Taskar B (2007) Predicting structured data. MIT press

    Google Scholar 

  4. Batra D, Kowdle A, Parikh D, Luo J, Chen T (2010) ICOSEG: Interactive co-segmentation with intelligent scribble guidance. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 3169–3176

    Google Scholar 

  5. Batra D, Kowdle A, Parikh D, Luo J, Chen T (2011) Interactively co-segmentation topically related images with intelligent scribble guidance. Int J Comput Vis 93(3):273–292

    Article  Google Scholar 

  6. Bovik AC (1991) Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Trans Sig Proc 39(9):2025–2043

    Article  Google Scholar 

  7. Boyd S, Vandenberghe L (2007) Localization and cutting-plane methods. From Stanford EE 364b lecture notes

    Google Scholar 

  8. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Analysis and Machine Intell 6:679–698

    Article  Google Scholar 

  9. Chaple GN, Daruwala R, Gofane MS (2015) Comparisons of robert, prewitt, sobel operator based edge detection methods for real time uses on fpga. In: 2015 International conference on technologies for sustainable development (ICTSD). IEEE, pp 1–4

    Google Scholar 

  10. Crammer K, Singer Y (2001) On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2(Dec):265–292

    Google Scholar 

  11. Deng G, Cahill L (1993) An adaptive gaussian filter for noise reduction and edge detection. In: 1993 IEEE conference record nuclear science symposium and medical imaging conference. IEEE, pp 1615–1619

    Google Scholar 

  12. Dhanachandra N, Manglem K, Chanu YJ (2015) Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Proced Comput Sci 54:764–771

    Article  Google Scholar 

  13. Ding L, Goshtasby A (2001) On the canny edge detector. Pattern Recogn 34(3):721–725

    Article  MATH  Google Scholar 

  14. Dunn D, Higgins WE (1995) Optimal gabor filters for texture segmentation. IEEE Trans Image Proc 4(7):947–964

    Article  Google Scholar 

  15. Fischer K, Gärtner B (2004) The smallest enclosing ball of balls: combinatorial structure and algorithms. Int J Comput Geom Appl 14(04n05):341–378

    Google Scholar 

  16. Gabor D (1946) Theory of communication. part 1: the analysis of information. J Inst Electr Eng-Part III: Radio Commun Eng 93(26):429–441

    Google Scholar 

  17. Gurobi Optimization, LLC (2022) Gurobi optimizer reference manual

    Google Scholar 

  18. Joachims T, Finley T, Yu C-NJ (2009) Cutting-plane training of structural SVMS. Mach Learn 77(1):27–59

    Article  MATH  Google Scholar 

  19. Kumar M, Saxena R et al (2013) Algorithm and technique on various edge detection: a survey. Sig Image Proc 4(3):65

    Google Scholar 

  20. Kumar P, Mitchell JS, Yildirim EA (2003) Approximate minimum enclosing balls in high dimensions using core-sets. J Exper Algor (JEA) 8:1

    MathSciNet  MATH  Google Scholar 

  21. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

    Google Scholar 

  22. Prasad VSN, Domke J (2005) Gabor filter visualization. J Atmos Sci 13:2005

    Google Scholar 

  23. Schölkopf B, Smola AJ, Bach F et al (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press

    Google Scholar 

  24. Schroff F, Criminisi A, Zisserman A (2008) Object class segmentation using random forests. In: BMVC, pp 1–10

    Google Scholar 

  25. Seo H, Badiei Khuzani M, Vasudevan V, Huang C, Ren H, Xiao R, Jia X, Xing L (2020) Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med Phys 47(5):e148–e167

    Article  Google Scholar 

  26. Shrivakshan G, Chandrasekar C (2012) A comparison of various edge detection techniques used in image processing. Int J Comput Sci Issues (IJCSI) 9(5):269

    Google Scholar 

  27. Song M, Civco D (2004) Road extraction using SVM and image segmentation. Photogrammetric Eng Remote Sens 70(12):1365–1371

    Article  Google Scholar 

  28. Sra S, Nowozin S, Wright SJ (2012) Optimization for machine learning. Mit Press

    Google Scholar 

  29. Tsai D-M, Wu S-K, Chen M-C (2001) Optimal gabor filter design for texture segmentation using stochastic optimization. Image Vis Comput 19(5):299–316

    Article  Google Scholar 

  30. Tsang IW, Kwok JT, Cheung P-M, Cristianini N (2005) Core vector machines: fast svm training on very large data sets. J Mach Learn Res 6(4)

    Google Scholar 

  31. Tsochantaridis I, Joachims T, Hofmann T, Altun Y, Singer Y (2005) Large margin methods for structured and interdependent output variables. J Mach Learn Res 6(9)

    Google Scholar 

  32. Zhou G, Sun J, Toh K-C (2003) Efficient algorithms for the smallest enclosing ball problem in high dimensional space. Novel Approaches to Hard Discrete Optim 37:173

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varuun A. Deshpande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deshpande, V.A., Terhuja, K. (2023). Image Segmentation Using Structural SVM and Core Vector Machines. In: Thakur, M., Agnihotri, S., Rajpurohit, B.S., Pant, M., Deep, K., Nagar, A.K. (eds) Soft Computing for Problem Solving. Lecture Notes in Networks and Systems, vol 547. Springer, Singapore. https://doi.org/10.1007/978-981-19-6525-8_28

Download citation

Publish with us

Policies and ethics