Skip to main content

Comparative Effects of Living and Non-living Mulches on Insect Pest Management in Agroecosystems

  • Chapter
  • First Online:
Mulching in Agroecosystems

Abstract

Organic farming and sustainable agriculture call for non-chemical, economic, and eco-friendly pest management techniques. Scientific efforts are underway to develop new or optimize the existing techniques. In this regard, habitat modification with mulching has been widely investigated on the suppression of insect pest abundance. In general, vegetationally diverse cropping systems impairs the herbivore’s ability to locate the host plant by creating physical barriers, disrupting the visual and olfactory cues, and enhancing plant defenses that lead to the reduction of pest abundance and disease incidences. Also, mulching increases natural enemy population density because of greater habitat diversity and food resources, thereby decreasing herbivore abundance indirectly by improving biological control activity. However, in some cases, mulching has negatively affected the crop yield by competing for available resources (water, nutrients, light, space, etc.), impacted natural enemy abundance and efficiency, or provided alternate hosts/refuge for the pest insects. Besides, mulching can also play a pivotal role in conserving and support the declining pollinator population by providing nectar and pollen, nesting sites, and refuge from predators. Overall, if appropriately planned, mulching might contribute significantly to insect pests’ non-chemical control and promote the diversity and abundance of natural enemies and pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri, M., & Schmidt, L. J. C. A. (1987). Mixing broccoli cuItivars reduces cabbage aphid numbers. California Agriculture, 41, 24–26.

    Google Scholar 

  • Altieri, M. A., Wilson, R. C., & Schmidt, L. L. J. C. P. (1985). The effects of living mulches and weed cover on the dynamics of foliage-and soil-arthropod communities in three crop systems. Crop Protection, 4, 201–213.

    Article  Google Scholar 

  • Alyokhin, A., Nault, B., & Brown, B. (2019). Soil conservation practices for insect pest management in highly disturbed agroecosystems—A review. Entomologia Experimentalis Et Applicata, 168, 7–27.

    Article  Google Scholar 

  • Andow, D. A. (1991). Vegetational diversity and arthropod population response. Annual Review of Entomology, 36, 561–586.

    Article  Google Scholar 

  • Andow, D. A., Nicholson, A. G., Wien, H. C., & Willson, H. R. (1986). Insect populations on cabbage grown with living mulches. Environmental Entomology, 15, 293–299.

    Article  Google Scholar 

  • Andow, D. A., & Risch, S. J. (1985). Predation in diversified agroecosystems—Relations between a coccinellid predator Coleomegilla-maculata and its food. Journal of Applied Ecology, 22, 357–372.

    Article  Google Scholar 

  • Brown, J. E., Dangler, J. M., Woods, F. M., Tilt, K. M., Henshaw, M. D., Griffey, W. A., & West, M. S. (1993). Delay in mosaic-virus onset and aphid vector reduction in summer squash grown on reflective mulches. HortScience, 28, 895–896.

    Article  Google Scholar 

  • Brown, M. W., & Tworkoski, T. (2004a). Pest management benefits of compost mulch in apple orchards. Agriculture Ecosystems & Environment, 103, 465–472.

    Article  Google Scholar 

  • Bryant, A., Brainard, D. C., Haramoto, E. R., & Szendrei, Z. (2013). Cover crop mulch and weed management influence arthropod communities in strip-tilled cabbage. Environmental Entomology, 42, 293–306.

    Article  PubMed  Google Scholar 

  • Burgio, G., Kristensen, H. L., Campanelli, G., Bavec, F., Bavec, M., von Fragstein und Niemsdorff, P., Depalo, L., Lanzoni, A., & Canali, S. J. B. O. B. (2014). Effect of living mulch on pest/beneficial interaction. Building Organic Bridges, 3, 741–744.

    Google Scholar 

  • Cane, J. H. (2015). Landscaping pebbles attract nesting by the native ground-nesting bee Halictus rubicundus (Hymenoptera: Halictidae). Apidologie, 46, 728–734.

    Article  Google Scholar 

  • Cirujeda, A., Aibar, J., Anzalone, A., Martin-Closas, L., Meco, R., Moreno, M. M., Pardo, A., Pelacho, A. M., Rojo, F., Royo-Esnal, A., Suso, M. L., & Zaragoza, C. (2012). Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agronomy for Sustainable Development, 32, 889–897.

    Article  CAS  Google Scholar 

  • Clayton, S. (2007). Domesticated nature: Motivations for gardening and perceptions of environmental impact. Journal of Environmental Psychology, 27, 215–224.

    Article  Google Scholar 

  • Costello, M. J., & Altieri, M. A. (1995). Abundance, growth-rate and parasitism of brevicoryne-brassicae and Myzus-Persicae (Homoptera, Aphididae) on Broccoli grown in living mulches. Agriculture Ecosystems & Environment, 52, 187–196.

    Article  Google Scholar 

  • Depalo, L., Burgio, G., von Fragstein, P., Kristensen, H. L., Bavec, M., Robačer, M., Campanelli, G., & Canali, S. (2016). Impact of living mulch on arthropod fauna: Analysis of pest and beneficial dynamics on organic cauliflower (Brassica oleracea L. var. botrytis) in different European scenarios. Renewable Agriculture and Food Systems, 32, 240–247.

    Article  Google Scholar 

  • Dvorak, P., Tomasek, J., Hamouz, K., & Kuchtova, P. (2015). Reply of mulch systems on weeds and yield components in potatoes. Plant Soil and Environment, 61, 322–327.

    Article  Google Scholar 

  • Fortel, L., Henry, M., Guilbaud, L., Mouret, H., & Vaissiere, B. E. (2016). Use of human-made nesting structures by wild bees in an urban environment. Journal of Insect Conservation, 20, 239–253.

    Article  Google Scholar 

  • Frank, D. L., & Liburd, O. E. (2005). Effects of living and synthetic mulch on the population dynamics of whiteflies and aphids, their associated natural enemies, and insect-transmitted plant diseases in zucchini. Environmental Entomology, 34, 857–865.

    Article  Google Scholar 

  • Garcia, A. A., Huato, M. A. D., Lara, M. H., Saenz-de-Cabezon, F. J., Perez-Moreno, I., Marco-Mancebon, V., & Lopez-Olguin, J. F. (2011). Insect occurrence and losses due to phytophagous species in the amaranth Amaranthus hypocondriacus L. crop in Puebla Mexico. African Journal of Agricultural Research, 6, 5924–5929.

    Google Scholar 

  • Genger, R. K., Rouse, D. I., & Charkowski, A. O. (2018). Straw mulch increases potato yield and suppresses weeds in an organic production system. Biological Agriculture & Horticulture, 34, 53–69.

    Article  Google Scholar 

  • Gill, H. K., McSorley, R., & Branham, M. (2011). Effect of organic mulches on soil surface insects and other arthropods. Florida Entomologist, 94, 226–232.

    Article  Google Scholar 

  • Gill, H. K., McSorley, R., Goyal, G., & Webb, S. E. (2010). Mulch as a potential management strategy for lesser cornstalk borer, elasmopalpus lignosellus (Insecta: Lepidoptera: Pyralidae), in Bush Bean (Phaseolus Vulgaris). Florida Entomologist, 93, 183–190.

    Article  Google Scholar 

  • Goddard, M. A., Dougill, A. J., & Benton, T. G. (2013). Why garden for wildlife? Social and ecological drivers, motivations and barriers for biodiversity management in residential landscapes. Ecological Economics, 86, 258–273.

    Article  Google Scholar 

  • Goulson, D., Nicholls, E., Botias, C., & Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957.

    Article  PubMed  Google Scholar 

  • Grundy, A., & Bond, B. (2007). Use of non-living mulches for weed control. Non-Chemical Weed Management, 135–153.

    Google Scholar 

  • Hannon, L. E., & Sisk, T. D. (2009). Hedgerows in an agri-natural landscape: Potential habitat value for native bees. Biological Conservation, 142, 2140–2154.

    Article  Google Scholar 

  • Harpaz, I. (1982). Nonpesticidal control of vector-borne viruses.

    Google Scholar 

  • Hartwig, N. L., & Ammon, H. U. (2002). 50th Anniversary—Invited article—Cover crops and living mulches. Weed Science, 50, 688–699.

    Article  CAS  Google Scholar 

  • Hinds, J., & Hooks, C. R. R. (2013). Population dynamics of arthropods in a sunn-hemp zucchini interplanting system. Crop Protection, 53, 6–12.

    Article  Google Scholar 

  • Hooks, C. R. R., & Johnson, M. W. (2004). Using undersown clovers as living mulches: Effects on yields, lepidopterous pest infestations, and spider densities in a Hawaiian broccoli agroecosystem. International Journal of Pest Management, 50, 115–120.

    Article  Google Scholar 

  • Hooks, C. R. R., & Johnson, M. W. (2006). Population densities of herbivorous lepidopterans in diverse cruciferous cropping habitats: Effects of mixed cropping and using a living mulch. BioControl, 51, 485–506.

    Article  Google Scholar 

  • Hooks, C. R. R., Valenzuela, H. R., & Defrank, J. (1998). Incidence of pests and arthropod natural enemies in zucchini grown with living mulches. Agriculture Ecosystems & Environment, 69, 217–231.

    Article  Google Scholar 

  • Jabran, K. (2019). Role of mulching in pest management and agricultural sustainability. Springer.

    Book  Google Scholar 

  • Jackson, D. M., & Harrison, H. F., Jr. (2008). Effects of a killed-cover crop mulching system on sweetpotato production, soil pests, and insect predators in South Carolina. Journal of Economic Entomology, 101, 1871–1880.

    Article  PubMed  Google Scholar 

  • Johnson, B. J. (1971). Effect of Weed Competition on Sunflowers. Weed Science, 19, 378–380.

    Article  Google Scholar 

  • Kogan, M. (1998). Integrated pest management: Historical perspectives and contemporary developments. Annual Review of Entomology, 43, 243–270.

    Article  CAS  PubMed  Google Scholar 

  • Köhler, H.-R., & Triebskorn, R. (2013). Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science, 341, 759–765.

    Article  PubMed  Google Scholar 

  • Kring, J. B. (1972). Flight behavior of aphids. Annual Review of Entomology, 17, 461.

    Google Scholar 

  • Lanini, W., Pittenger, D., Graves, W., Munoz, F., & Agamalian, H. (1989). Subclovers as living mulches for managing weeds in vegetables. California Agriculture, 43, 25–27.

    Google Scholar 

  • Lee, J. C., & Heimpel, G. E. (2005). Impact of flowering buckwheat on Lepidopteran cabbage pests and their parasitoids at two spatial scales. Biological Control, 34, 290–301.

    Article  Google Scholar 

  • Leghari, S. J., Wahocho, N. A., Laghari, G. M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K., Bhutto, T. A., Wahocho, S. A., & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10, 209–219.

    Google Scholar 

  • Legrand, A., & Barbosa, P. (2003). Plant morphological complexity impacts foraging efficiency of adult Coccinella septempunctata L. (Coleoptera : Coccinellidae). Environmental Entomology, 32, 1219–1226.

    Article  Google Scholar 

  • Letourneau, D. K., Armbrecht, I., Rivera, B. S., Lerma, J. M., Carmona, E. J., Daza, M. C., Escobar, S., Galindo, V., Gutiérrez, C., & López, S. D. (2011). Does plant diversity benefit agroecosystems? A synthetic review. Ecological Applications, 21, 9–21.

    Article  PubMed  Google Scholar 

  • Lewis, W. J., van Lenteren, J. C., Phatak, S. C., & Tumlinson, J. H. (1997). A total system approach to sustainable pest management. Proceedings of the National Acadamy Science United States of America, 94, 12243–12248 (3rd edn).

    Google Scholar 

  • Liebman, M., Mohler, C. L., & Staver, C. P. (2001). Ecological management of agricultural weeds. Cambridge University Press.

    Book  Google Scholar 

  • Lin, P. C., Lin, H. J., Liao, Y. Y., Guo, H. R., & Chen, K. T. (2013). Acute poisoning with neonicotinoid insecticides: A case report and literature review. Basic & Clinical Pharmacology & Toxicology, 112, 282–286.

    Article  CAS  Google Scholar 

  • Loebenstein, G., & Raccah, B. (1980). Control of non-persistently transmitted aphid-borne viruses. Phytoparasitica, 8, 221–235.

    Article  Google Scholar 

  • Luna, J. M., Mitchell, J. P., & Shrestha, A. (2012). Conservation tillage for organic agriculture: Evolution toward hybrid systems in the western USA. Renewable Agriculture and Food Systems, 27, 21–30.

    Article  Google Scholar 

  • Lundgren, J. G., & Fergen, J. K. (2010). The effects of a winter cover crop on Diabrotica virgifera (Coleoptera: Chrysomelidae) populations and beneficial arthropod communities in no-till maize. Environmental Entomology, 39, 1816–1828.

    Article  PubMed  Google Scholar 

  • Mahmoudpour, M. A., & Stapleton, J. J. (1997). Influence of sprayable mulch colour on yield of eggplant (Solanum melongena L. cv. Millionaire). Scientia Horticulturae, 70, 331–338.

    Article  Google Scholar 

  • Majewska, A. A., & Altizer, S. (2020). Planting gardens to support insect pollinators. Conservation Biology, 34, 15–25.

    Article  PubMed  Google Scholar 

  • Menz, M. H., Phillips, R. D., Winfree, R., Kremen, C., Aizen, M. A., Johnson, S. D., & Dixon, K. W. (2011). Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends in Plant Science, 16, 4–12.

    Article  CAS  PubMed  Google Scholar 

  • Mochiah, M., & Baidoo, P. (2012). Effects of mulching materials on agronomic characteristics, pests of pepper (Capsicum annuum L.) and their natural enemies population.

    Google Scholar 

  • Nawaz, A., Farooq, M., Lal, R., Rehman, A., Hussain, T., Nadeem, A., & Development. (2017). Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice–wheat systems. Land Degradation, 28, 1078–1090.

    Google Scholar 

  • Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Othim, S. T. O., Kahuthia-Gathu, R., Akutse, K. S., Foba, C. N., & Fiaboe, K. K. M. (2018a). Seasonal occurrence of amaranth Lepidopteran defoliators and effect of attractants and amaranth lines in their management. Journal of Applied Entomology, 142, 637–645.

    Article  CAS  Google Scholar 

  • Othim, S. T. O., Ramasamy, S., Kahuthia-Gathu, R., Dubois, T., Ekesi, S., & Fiaboe, K. K. M. (2018b). Expression of resistance in amaranthus spp. (Caryophyllales: Amaranthaceae): Effects of selected accessions on the behaviour and biology of the amaranth leaf-webber, spoladea recurvalis (Lepidoptera: Crambidae). Insects, 9, 62.

    Google Scholar 

  • Porter, W., WC, P., & WW, E. (1982). Effects of aluminium-painted and black polyethylene mulches on bell pepper, capsicum annum L.

    Google Scholar 

  • Prasifka, J. R., Schmidt, N. P., Kohler, K. A., O’neal, M. E., Hellmich, R. L., & Singer, J. W. (2006). Effects of living mulches on predator abundance and sentinel prey in a corn–soybean–forage rotation. Environmental Entomology, 35, 1423–1431.

    Google Scholar 

  • Pywell, R. F., Meek, W. R., Hulmes, L., Hulmes, S., James, K. L., Nowakowski, M., & Carvell, C. (2011). Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes. Journal of Insect Conservation, 15, 853–864.

    Article  Google Scholar 

  • Rapisarda, C., & Cocuzza, G. E. M. (2017). Integrated pest management in tropical regions. CABI.

    Google Scholar 

  • Rieux, R., Simon, S., & Defrance, H. (1999). Role of hedgerows and ground cover management on arthropod populations in pear orchards. Agriculture Ecosystems & Environment, 73, 119–127.

    Article  Google Scholar 

  • Root, R. B. (1973). Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecological Monographs, 43, 95–124.

    Article  Google Scholar 

  • Sans, F., & Altieri, M. (2005). Effects of intercropping and fertilization on weed abundance, diversity and resistance to invasion. International Society of Organic Agricultural Research, Bonn.

    Google Scholar 

  • Saucke, H., Juergens, M., Doring, T. F., Fittje, S., Lesemann, D. E., & Vetten, H. J. (2009). Effect of sowing date and straw mulch on virus incidence and aphid infestation in organically grown faba beans (Vicia faba). Annals of Applied Biology, 154, 239–250.

    Article  Google Scholar 

  • Schalk, J. M., Creighton, C. S., Fery, R. L., Sitterly, W. R., Davis, B. W., Mcfadden, T. L., & Day, A. (1979). Reflective film mulches influences insect control and yield in vegetables. Journal of the American Society for Horticultural Science, 104, 759–762.

    Article  Google Scholar 

  • Schmidt, M. H., Thewes, U., Thies, C., & Tscharntke, T. (2004). Aphid suppression by natural enemies in mulched cereals. Entomologia Experimentalis et Applicata, 113, 87–93.

    Article  Google Scholar 

  • Schmidt, N. P., O’Neal, M. E., & Singer, J. W. (2007). Alfalfa living mulch advances biological control of soybean aphid. Environ Entomol, 36, 416–424.

    Google Scholar 

  • Smid, H. M., van Loon, J. J. A., Posthumus, M. A., & Vet, L. E. M. (2002). GC-EAG-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: Olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology, 12, 169–176.

    Article  CAS  Google Scholar 

  • Smith, J. D., Dinssa, F. F., Anderson, R. S., Su, F. C., & Srinivasan, R. (2018). Identification of major insect pests of Amaranthus spp. and germplasm screening for insect resistance in Tanzania. International Journal of Tropical Insect Science, 38, 261–273.

    Article  Google Scholar 

  • Splawski, C. E., Regnier, E. E., Harrison, S. K., Goodell, K., Bennett, M. A., & Metzger, J. D. (2014). Mulch effects on floral resources and fruit production of squash, and on pollination and nesting by squash bees. HortTechnology, 24, 535–545.

    Article  Google Scholar 

  • Stapleton, J., & Summers, C. (1997). Reflective mulch for managing aphids, aphid-borne viruses, and silverleaf whitely: 1996 season review. UC Plant Protection Quarterly, 7, 13–15.

    Google Scholar 

  • Stapleton, J., Summers, C., Turini, T., & Duncan, R. (1993). Effect of reflective polyethylene and spray mulches on aphid populations and vegetative growth of bell pepper. In Proceedings of the National Agricultural Plastics Congress (Vol. 24, pp. 117–122).

    Google Scholar 

  • Stapleton, J. J., & Summers, C. G. (2002). Reflective mulches for management of aphids and aphid-borne virus diseases in late-season cantaloupe (Cucumis melo L. var. cantalupensis). Crop Protection, 21, 891–898.

    Article  Google Scholar 

  • Stegmaier, C. E. (1950). Insects associated with the rough pigweed, Amaranthus retroflexus L. (Amaranthaceae).

    Google Scholar 

  • Steinmetz, Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Troger, J., Munoz, K., Fror, O., & Schaumann, G. E. (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705.

    Article  CAS  PubMed  Google Scholar 

  • Stern, V., Smith, R., van den Bosch, R., & Hagen, K. (1959). The integration of chemical and biological control of the spotted alfalfa aphid: The integrated control concept. Hilgardia, 29, 81–101.

    Article  CAS  Google Scholar 

  • Teasdale, J. R., Abdul-Baki, A. A., Mill, D., & Thorpe, K. W. (2002). Enhanced pest management with cover crop mulches. In XXVI International Horticultural Congress: Sustainability of Horticultural Systems in the 21st Century (Vol. 638, pp. 135–140).

    Google Scholar 

  • Teasdale, J. R., & Mohler, C. L. (2000). The quantitative relationship between weed emergence and the physical properties of mulches. Weed Science, 48, 385–392.

    Article  CAS  Google Scholar 

  • Vincent, C., Hallman, G., Panneton, B., & Fleurat-Lessard, F. (2003). Management of agricultural insects with physical control methods. Annual Review of Entomology, 48, 261–281.

    Article  CAS  PubMed  Google Scholar 

  • Vorsah, R. V., Dingha, B. N., Gyawaly, S., Fremah, S. A., Sharma, H., Bhowmik, A., Worku, M., & Jackai, L. E. (2020). Organic mulch increases insect herbivory by the flea beetle species, disonycha glabrata, on amaranthus spp. Insects, 11.

    Google Scholar 

Download references

Funding

This work received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare no conflict of interest.

Corresponding authors

Correspondence to Abrar Muhammad or Habib Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muhammad, A., Ali, M., Shakeel, M., Buajan, S., Ali, H. (2022). Comparative Effects of Living and Non-living Mulches on Insect Pest Management in Agroecosystems. In: Akhtar, K., Arif, M., Riaz, M., Wang, H. (eds) Mulching in Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-19-6410-7_15

Download citation

Publish with us

Policies and ethics