Skip to main content

Theory of Halo Nuclei

  • Reference work entry
  • First Online:
Handbook of Nuclear Physics
  • 83 Accesses

Abstract

Halo nuclei are characterized by a few weakly bound halo nucleons and a more tightly bound core. This separation of scales can be exploited in a few-body description of halo nuclei, since the detailed structure of the core is not resolved by the halo nucleons. We present an introduction to the effective (field) theory for low-energy properties of halo nuclei. The focus is on halos with S-wave interactions for which universal properties are most pronounced. The special role of the unitary limit is illustrated using the example of multi-neutron systems and the Efimov effect as a universal binding mechanism for halo nuclei. Connections to ultracold atoms and hadron physics are highlighted, and extensions to higher partial waves, Coulomb forces, and nuclear reactions are briefly touched upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • B. Acharya, D.R. Phillips, Nucl. Phys. A 913, 103 (2013)

    ADS  Google Scholar 

  • B. Acharya, C. Ji, D.R. Phillips, Phys. Lett. B 723, 196 (2013)

    ADS  Google Scholar 

  • I.R. Afnan, A.W. Thomas, Top. Curr. Phys. 2, 1 (1977)

    Google Scholar 

  • F. Ajzenberg-Selove, Nucl. Phys. A 475, 1 (1987)

    ADS  Google Scholar 

  • F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991)

    ADS  Google Scholar 

  • S. Albeverio, R. Hoegh-Krohn, T.T. Wu, Phys. Lett. A 83, 105 (1981)

    ADS  MathSciNet  Google Scholar 

  • A.E.A. Amorim, T. Frederico, L. Tomio, Phys. Rev. C 56, R2378 (1997)

    ADS  Google Scholar 

  • G. Audi, M. Wang, A. Wapstra, F. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)

    Google Scholar 

  • T. Barford, M.C. Birse, J. Phys. A 38, 697 (2005)

    ADS  MathSciNet  Google Scholar 

  • D. Baye, P. Capel, Lect. Notes Phys. 848, 121 (2012)

    ADS  Google Scholar 

  • D. Baye, P. Descouvemont, Ann. Phys. (NY) 165, 115 (1985)

    ADS  Google Scholar 

  • S.R. Beane, T.D. Cohen, D.R. Phillips, Nucl. Phys. A 632, 445 (1998)

    ADS  Google Scholar 

  • P.F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002)

    ADS  Google Scholar 

  • P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999a)

    ADS  Google Scholar 

  • P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999b)

    ADS  Google Scholar 

  • P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003a)

    ADS  Google Scholar 

  • P.F. Bedaque, G. Rupak, H.W. Griesshammer, H.-W. Hammer, Nucl. Phys. A 714, 589 (2003b)

    ADS  Google Scholar 

  • C.A. Bertulani, H.-W. Hammer, U. Van Kolck, Nucl. Phys. A 712, 37 (2002)

    ADS  Google Scholar 

  • E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006)

    ADS  MathSciNet  Google Scholar 

  • E. Braaten, H.-W. Hammer, Ann. Phys. 322, 120 (2007)

    ADS  Google Scholar 

  • E. Braaten, H.-W. Hammer, Phys. Rev. Lett. 128, 032002 (2022). arXiv:2107.02831 [hep-ph]

    ADS  Google Scholar 

  • E. Braaten, P. Hagen, H.-W. Hammer, L. Platter, Phys. Rev. A 86, 012711 (2012)

    ADS  Google Scholar 

  • J. Braun, W. Elkamhawy, R. Roth, H.-W. Hammer, J. Phys. G 46, 115101 (2019)

    ADS  Google Scholar 

  • A. Calci, P. Navrátil, R. Roth, J. Dohet-Eraly, S. Quaglioni, G. Hupin, Phys. Rev. Lett. 117, 242501 (2016)

    ADS  Google Scholar 

  • D.L. Canham, H.-W. Hammer, Eur. Phys. J. A 37, 367 (2008)

    ADS  Google Scholar 

  • D.L. Canham, H.-W. Hammer, Nucl. Phys. A 836, 275 (2010)

    ADS  Google Scholar 

  • L.F. Canto, P.R.S. Gomes, R. Donangelo, J. Lubian, M.S. Hussein, Phys. Rep. 596, 1 (2015)

    ADS  MathSciNet  Google Scholar 

  • P. Capel, D.R. Phillips, H.-W. Hammer, Phys. Rev. C 98, 034610 (2018)

    ADS  Google Scholar 

  • P. Capel, D.R. Phillips, H.-W. Hammer, Phys. Lett. B 825, 136847 (2021)

    Google Scholar 

  • J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999)

    ADS  Google Scholar 

  • Q. Chen et al., Phys. Rev. C 77, 054002 (2008)

    ADS  Google Scholar 

  • S. Dietz, H.-W. Hammer, S. König, A. Schwenk, Three-body resonances in pionless effective field theory. Phys. Rev. C 105, 064002 (2022). arXiv:2109.11356 [nucl-th]

    Google Scholar 

  • V. Efimov, Phys. Lett. B 33, 563 (1970)

    ADS  Google Scholar 

  • V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  • V. Efimov, Sov. J. Nucl. Phys. 29, 546 (1979)

    Google Scholar 

  • E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    ADS  Google Scholar 

  • L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961) [Zh. Eksp. Teor. Fiz. 39, 1459 (1960)]

    Google Scholar 

  • T. Faestermann, A. Bergmaier, R. Gernhäuser, D. Koll, M. Mahgoub, Phys. Lett. B 824, 136799 (2022)

    Google Scholar 

  • L. Fernando, A. Vaghani, G. Rupak, Electromagnetic form factors of one neutron halos with spin 1/2+ ground state arXiv:1511.04054 [nucl-th] (2015)

    Google Scholar 

  • T. Frederico, A. Delfino, L. Tomio, M.T. Yamashita, Prog. Part. Nucl. Phys. 67, 939 (2012)

    ADS  Google Scholar 

  • M. Freer, Rep. Prog. Phys. 70, 2149 (2007)

    ADS  Google Scholar 

  • J.L. Friar, J. Martorell, D.W.L. Sprung, Phys. Rev. A 56, 4579 (1997)

    ADS  Google Scholar 

  • R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92, 024005 (2015)

    ADS  Google Scholar 

  • A. Gardestig, J. Phys. G 36, 053001 (2009)

    ADS  Google Scholar 

  • W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer, Berlin/Heidelberg, 1983)

    Google Scholar 

  • M. Göbel, T. Aumann, C.A. Bertulani, T. Frederico, H.-W. Hammer, D.R. Phillips, Phys. Rev. C 104, 024001 (2021)

    ADS  Google Scholar 

  • J. Golak, R. Skibiński, H. Witała, K. Topolnicki, H. Kamada, A. Nogga, L.E. Marcucci, Phys. Rev. C 94, 034002 (2016)

    ADS  Google Scholar 

  • J. Golak, R. Skibiński, K. Topolnicki, H. Witała, A. Grassi, H. Kamada, A. Nogga, L.E. Marcucci, Phys. Rev. C 98, 054001 (2018)

    ADS  Google Scholar 

  • C.H. Greene, P. Giannakeas, J. Perez-Rios, Rev. Mod. Phys. 89, 035006 (2017)

    ADS  Google Scholar 

  • F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

    ADS  Google Scholar 

  • R.W. Hackenburg, Phys. Rev. C 73, 044002 (2006)

    ADS  Google Scholar 

  • L.R. Hafstad, E. Teller, Phys. Rev. 54, 681 (1938)

    ADS  Google Scholar 

  • C.R. Hagen, Phys. Rev. D 5, 377 (1972)

    ADS  Google Scholar 

  • G. Hagen, P. Hagen, H.-W. Hammer, L. Platter, Phys. Rev. Lett. 111, 132501 (2013)

    ADS  Google Scholar 

  • H.-W. Hammer, D. Lee, Annals Phys. 325, 2212 (2010)

    ADS  Google Scholar 

  • H.-W. Hammer, D.R. Phillips, Nucl. Phys. A 865, 17 (2011)

    ADS  Google Scholar 

  • H.-W. Hammer, L. Platter, Ann. Rev. Nucl. Part. Sci. 60, 207 (2010)

    ADS  Google Scholar 

  • H.-W. Hammer, D.T. Son, Proc. Nat. Acad. Sci. 118, e2108716118 (2021)

    Google Scholar 

  • H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G 44, 103002 (2017)

    ADS  Google Scholar 

  • H.-W. Hammer, S. König, U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020)

    ADS  Google Scholar 

  • P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)

    ADS  Google Scholar 

  • P.G. Hansen, A.S. Jensen, B. Jonson, Ann. Rev. Nucl. Part. Sci. 45, 591 (1995)

    ADS  Google Scholar 

  • K. Harada, H. Kubo, A. Ninomiya, Int. J. Mod. Phys. A 24, 3191 (2009)

    ADS  Google Scholar 

  • T. Herrmann, R. Rosenfelder, Eur. Phys. J. A 2, 28 (1998)

    ADS  Google Scholar 

  • H. Horiuchi, K. Ikeda, Int. Rev. Nucl. Phys. 4, 1 (1986)

    Google Scholar 

  • K. Ikeda, N. Takigawa, H. Horiuchi, Prog. Theor. Phys. Supp. E68, 464 (1968)

    ADS  Google Scholar 

  • A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004)

    ADS  Google Scholar 

  • C. Ji, D.R. Phillips, Few Body Syst. 54, 2317 (2013)

    ADS  Google Scholar 

  • B. Jonson, Phys. Rep. 389, 1 (2004)

    ADS  Google Scholar 

  • R. Kanungo et al., Phys. Rev. Lett. 117, 102501 (2016)

    ADS  Google Scholar 

  • D.B. Kaplan, in 7th Summer School in Nuclear Physics Symmetries (1995), arXiv:nucl-th/9506035

    Google Scholar 

  • D.B. Kaplan, Five lectures on effective field theory arXiv:nucl-th/0510023 (2005)

    Google Scholar 

  • D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424, 390 (1998)

    ADS  Google Scholar 

  • R.Y. Kezerashvili, in 6th International Conference on Fission and Properties of Neutron Rich Nuclei (2016), arXiv:1608.00169 [nucl-th]

    Google Scholar 

  • K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono et al., Phys. Rev. Lett. 116, 052501 (2016)

    ADS  Google Scholar 

  • N. Kobayashi et al., Phys. Rev. C 86, 054604 (2012)

    ADS  Google Scholar 

  • S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017)

    ADS  Google Scholar 

  • M. Langevin et al., Phys. Lett. B 150, 71 (1985)

    ADS  Google Scholar 

  • A.O. Macchiavelli, Proceedings, Critical Stability 2014: Santos, Brazil, October 12–17, 2014. Few Body Syst. 56, 773 (2015)

    ADS  Google Scholar 

  • V. Maddalena et al., Phys. Rev. C 63, 024613 (2001)

    ADS  Google Scholar 

  • A. Margaryan, R.P. Springer, J. Vanasse, Phys. Rev. C 93(5), 054001 (2016)

    ADS  Google Scholar 

  • F.M. Marqués, J. Carbonell, Eur. Phys. J. A 57, 105 (2021)

    ADS  Google Scholar 

  • T. Mehen, I.W. Stewart, M.B. Wise, Phys. Lett. B 474, 145 (2000)

    ADS  MathSciNet  Google Scholar 

  • A.B. Migdal, Sov. Phys. JETP 1, 2 (1955)

    Google Scholar 

  • J.P. Miller et al., Nucl. Phys. A 343, 347 (1980)

    ADS  Google Scholar 

  • R.F. Mohr, R.J. Furnstahl, R.J. Perry, K.G. Wilson, H.-W. Hammer, Ann. Phys. 321, 225 (2006)

    ADS  Google Scholar 

  • A.M. Moro, Proc. Int. Sch. Phys. Fermi 201, 129 (2019)

    Google Scholar 

  • S. Mosby et al., Nucl. Phys. A 909, 69 (2013)

    ADS  Google Scholar 

  • L. Moschini, J. Yang, P. Capel, Phys. Rev. C 100, 044615 (2019)

    ADS  Google Scholar 

  • P. Naidon, S. Endo, Rept. Prog. Phys. 80, 056001 (2017)

    ADS  Google Scholar 

  • T. Nakamura et al., Phys. Rev. Lett. 83, 1112 (1999)

    ADS  Google Scholar 

  • T. Nakamura et al., Physics of unstable nuclei. Proceedings, International symposium, ISPUN’02, Halong Bay, Vietnam, 20–25 Nov 2002. Nucl. Phys. A 722, C301 (2003)

    Google Scholar 

  • T. Nakamura et al., Phys. Rev. C 79, 035805 (2009)

    ADS  Google Scholar 

  • E. Nielsen, D. Fedorov, A. Jensen, E. Garrido, Phys. Rep. 347, 373 (2001)

    ADS  MathSciNet  Google Scholar 

  • Y. Nishida, Phys. Rev. A 86, 012710 (2012)

    ADS  Google Scholar 

  • Y. Nishida, D.T. Son, Phys. Rev. D 76, 086004 (2007)

    ADS  MathSciNet  Google Scholar 

  • K. Ogata, C.A. Bertulani, Prog. Theor. Phys. 123, 701 (2010)

    ADS  Google Scholar 

  • A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001a)

    ADS  Google Scholar 

  • A. Ozawa et al., Nucl. Phys. A 691, 599 (2001b)

    ADS  Google Scholar 

  • M. Pfutzner, M. Karny, L.V. Grigorenko, K. Riisager, Rev. Mod. Phys. 84, 567 (2012)

    ADS  Google Scholar 

  • A. Phillips, Nucl. Phys. A 107, 209 (1968)

    ADS  Google Scholar 

  • D.R. Phillips, T.D. Cohen, Phys. Lett. B 390, 7 (1997)

    ADS  Google Scholar 

  • D.R. Phillips, G. Rupak, M.J. Savage, Phys. Lett. B 473, 209 (2000)

    ADS  Google Scholar 

  • L. Platter, D.R. Phillips, Few Body Syst. 40, 35 (2006)

    ADS  Google Scholar 

  • L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004)

    ADS  Google Scholar 

  • K. Riisager, Phys. Scripta T152, 014001 (2013)

    ADS  Google Scholar 

  • G. Rupak, Int. J. Mod. Phys. E 25, 1641004 (2016)

    ADS  Google Scholar 

  • G. Rupak, L. Fernando, A. Vaghani, Phys. Rev. C 86, 044608 (2012)

    ADS  Google Scholar 

  • J.K. Smith et al., Nucl. Phys. A 940, 235 (2015)

    ADS  Google Scholar 

  • K. Tanaka et al., Phys. Rev. Lett. 104, 062701 (2010)

    ADS  Google Scholar 

  • I. Tanihata, Eur. Phys. J. Plus 131, 90 (2016)

    Google Scholar 

  • I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985)

    ADS  Google Scholar 

  • I. Tanihata, H. Savajols, R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013)

    ADS  Google Scholar 

  • D.R. Tilley et al., Nucl. Phys. A 745, 155 (2004)

    ADS  Google Scholar 

  • Y. Togano et al., Phys. Lett. B 761, 412 (2016)

    ADS  Google Scholar 

  • J. Vanasse, Phys. Rev. C 88, 044001 (2013)

    ADS  Google Scholar 

  • J. Vanasse, Phys. Rev. C 95, 024318 (2017a)

    ADS  Google Scholar 

  • J. Vanasse, Phys. Rev. C 95, 024002 (2017b)

    ADS  Google Scholar 

  • U. van Kolck, Nucl. Phys. A 645, 273 (1999)

    ADS  Google Scholar 

  • M. Wang, G. Audi, A. Wapstra, F. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Google Scholar 

  • K.M. Watson, Phys. Rev. 88, 1163 (1952)

    ADS  Google Scholar 

  • K.G. Wilson, Phys. Rev. D 3, 1818 (1971)

    ADS  MathSciNet  Google Scholar 

  • M.T. Yamashita, T. Frederico, L. Tomio, Phys. Lett. B 660, 339 (2008)

    ADS  Google Scholar 

  • M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank Chen Ji and Daniel R. Phillips for a fruitful collaboration that led to this chapter and Chen Ji for comments on the manuscript. This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 279384907 – SFB 1245 and by the German Federal Ministry of Education and Research (BMBF) (Grant No. 05P21RDFNB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. -W. Hammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hammer, H.W. (2023). Theory of Halo Nuclei. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-19-6345-2_64

Download citation

Publish with us

Policies and ethics