Skip to main content

Application of Machine Learning in Determining the Mechanical Properties of Materials

  • Chapter
  • First Online:
Machine Learning Applied to Composite Materials

Part of the book series: Composites Science and Technology ((CST))

Abstract

Currently, the challenge in front of researchers is to discover new novel material with superior properties as per the demand of the society with a vast range of applications. With evaluation in material characterization techniques large amounts of material data are obtained through experiments and simulations. Even in some cases theoretical concepts cannot be applicable to these data. With increase in material data, application of machine learning and data analytics come into play. Application of machine learning is applicable in various fields such as material properties, analyzing complex reactions, inorganic chemistry, understanding crystal structure, in the design of experiments, etc. Through this article our focus is towards application of machine learning in the field of material characterization techniques in determining the mechanical properties of materials. In this chapter, a brief review of application of machine learning in the field of characterization of the mechanical properties such as tensile strength, fatigue behavior and visco-elastic study have been done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, Choudhary A (2016) Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. Appl Mater 4:053208

    Google Scholar 

  2. Stoll A, Benner P (2021) Machine learning for material characterization with an application for predicting mechanical properties. GAMM-Mitteilungen 44:e202100003. https://doi.org/10.1002/gamm.202100003

    Article  Google Scholar 

  3. Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research

    Google Scholar 

  4. Chen CLP, Zhang C-Y (2014) Data-Intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci (Ny) 275:314–347. https://doi.org/10.1016/j.ins.2014.01.015

    Article  Google Scholar 

  5. Lusher SJ, McGuire R, van Schaik RC, Nicholson CD, de Vlieg J (2014) Data-driven medicinal chemistry in the era of big data. Drug Discov Today 19(7):859–868. https://doi.org/10.1016/j.drudis.2013.12.004

    Article  CAS  Google Scholar 

  6. Draxl C, Scheffler M (2018) NOMAD: the FAIR concept for big data-driven materials science. MRS Bull 43:676–682

    Article  Google Scholar 

  7. Pilania G (2021) Machine learning in materials science: from explainable predictions to autonomous design. Comput Mater Sci 193:110360. https://doi.org/10.1016/j.commatsci.2021.110360

    Article  CAS  Google Scholar 

  8. Long C, Hattrick-Simpers J, Murakami M, Srivastava R, Takeuchi I, Karen VL, Li X (2007) Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis. Rev Sci Instrum 78:072217

    Article  CAS  Google Scholar 

  9. Long C, Bunker D, Li X, Karen V, Takeuchi I (2009) Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev Sci Instrum 80:103902

    Article  CAS  Google Scholar 

  10. Kusne AG et al (2014) On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci Rep 4:6367

    Article  Google Scholar 

  11. Suram SK et al (2016) Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system. ACS Comb Sci 19:37–46

    Google Scholar 

  12. Alpaydin E (2014) Introduction to machine learning. The MIT Press, Cambridge, MA

    Google Scholar 

  13. Nguyen H, Maeda S, Oono K (2017) Semi-supervised learning of hierarchical representations of molecules using neural message passing. Preprint at arXiv:1711.10168

  14. Sutton RS, Barto AG (2018) Reinforcement learning. The MIT Press, Cambridge, MA

    Google Scholar 

  15. Larranaga P, Atienza D, Diaz-Rozo J, Ogbechie A, Puerto-Santana CE, Bielza C (2018) Industrial applications of machine learning. CRC Press, Boca Raton

    Google Scholar 

  16. Lookman T, Eidenbenz S, Alexander F, Barnes C (eds) (2018) Materials discovery and design by means of data science and optimal learning. Springer International Publishing, Basel

    Google Scholar 

  17. Ryan K, Lengyel J, Shatruk M (2018) Crystal structure prediction via deep learning. J Am Chem Soc 140:10158–10168

    Article  Google Scholar 

  18. Nouira A, Sokolovska N, Crivello J-C (2018) Crystalgan: learning to discover crystallographic structures with generative adversarial networks. Preprint at arXiv:1810.11203

  19. Zheng X, Zheng P, Zhang R-Z (2018) Machine learning material properties from the periodic table using convolutional neural networks. Chem Sci 9:8426–8432

    Article  CAS  Google Scholar 

  20. Carrete J, Li W, Mingo N, Wang S, Curtarolo S (2014) Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys Rev X 4:011019

    CAS  Google Scholar 

  21. Kim C, Pilania G, Ramprasad R (2016) From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem Mater 28:1304–1311

    Article  CAS  Google Scholar 

  22. Isayev O, Fourches D, Muratov EN, Oses C, Rasch K, Tropsha A, Curtarolo S (2015) Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem Mater 27:735–743

    Article  CAS  Google Scholar 

  23. Schütt K, Glawe H, Brockherde F, Sanna A, Müller K, Gross E (2014) How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys Rev B 89:205118

    Article  Google Scholar 

  24. Seko A, Hayashi H, Nakayama K, Takahashi A, Tanaka I (2017) Representation of compounds for machine-learning prediction of physical properties. Phys Rev B 95:144110

    Article  Google Scholar 

  25. de Jong M, Chen W, Notestine R, Persson K, Ceder G, Jain A, Asta M, Gamst A (2016) A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 6:34256

    Article  Google Scholar 

  26. Legrain F, Carrete J, van Roekeghem A, Curtarolo S, Mingo N (2017) How chemical composition alone can predict vibrational free energies and entropies of solids. Chem Mater 29:6220–6227

    Article  CAS  Google Scholar 

  27. Medasani B, Gamst A, Ding H, Chen W, Persson KA, Asta M, Canning A, Haranczyk M (2016) Predicting defect behavior in B2 intermetallics by merging ab initio modeling and machine learning. NPJ Comput Mater 2:1–10

    Article  CAS  Google Scholar 

  28. Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK (2017) To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun 8:1–7

    Article  Google Scholar 

  29. Graser J, Kauwe SK, Sparks TD (2018) Machine learning and energy minimization approaches for crystal structure predictions: a review and new horizons. Chem Mater 30:3601–3612

    Article  CAS  Google Scholar 

  30. Kim E, Huang K, Jegelka S, Olivetti E (2017) Virtual screening of inorganic materials synthesis parameters with deep learning. NPJ Comput Mater 3:1–9

    Article  CAS  Google Scholar 

  31. Wang C, Shen C, Cui Q, Zhang C, Xu W (2019) Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels. J Nucl Mater 151823. http://doi.org/10.1016/j.jnucmat.2019.151823

  32. Wang C, Zhang C, Zhao J, Yang Z, Liu W (2017) Microstructure evolution and yield strength of CLAM steel in low irradiation condition. Mater Sci Eng A 682:563–568

    Article  CAS  Google Scholar 

  33. Sasikumar T, Rajendraboopathy S, Usha K, Vasudev E (2008) Artificial neural network prediction of ultimate strength of unidirectional T-300/914 tensile specimens using acoustic emission response. J Nondestruct Eval 27:127–133

    Article  Google Scholar 

  34. Santos I, Nieves J, Penya YK, Bringas PG (2009) Machine-learning-based mechanical properties prediction in foundry production. In: ICCAS-SICE 2009, pp 4536–4541

    Google Scholar 

  35. Sterjovski Z, Nolan D, Carpenter K, Dunne D, Norrish J (2005) Artificial neural networks for modelling the mechanical properties of steels in various applications. J Mater Process Technol 170:536–544

    Article  CAS  Google Scholar 

  36. Datta S, Pettersson F, Ganguly S, Saxén H, Chakraborti N (2007) Designing high strength multi-phase steel for improved strength-ductility balance using neural networks and multi-objective genetic algorithms. ISIJ Int 47:1195–1203

    Article  CAS  Google Scholar 

  37. Saxén H, Pettersson F (2006) Method for the selection of inputs and structure of feedforward neural networks. 30(6–7):1038–1045. http://doi.org/10.1016/j.compchemeng.2006.01.007

  38. Li X (2003) In: Fonseca CM, Fleming PJ, Zitzler E, Deb K, Thiele L (eds) 2nd international conference on evolutionary multi-criterion optimization. Lecture notes in computer science, LNCS 2632, p 207

    Google Scholar 

  39. Pettersson F, Chakraborti N, Saxén H (2007) A genetic algorithms based multi-objective neural net applied to noisy blast furnace data. 7(1):387–397. http://doi.org/10.1016/j.asoc.2005.09.001

  40. Zhang E, Yin M, Karniadakis G (2020) Physics-informed neural networks for nonhomogeneous material identification in elasticity imaging. arXiv preprint arXiv:2009.04525

  41. Metzbower E, deLoach J, Lalam S, Bhadeshia H (2001) Neural network analysis of strength and ductility of welding alloys for high strength low alloy shipbuilding steels. Sci Technol Weld Joining 6:116–124

    Google Scholar 

  42. Shigemori H, Kano M, Hasebe S (2011) Optimum quality design system for steel products through locally weighted regression model. J Process Control 21:293–301

    Article  CAS  Google Scholar 

  43. Swaddiwudhipong S, Tho KK, Liu ZS, Hua J, Ooi NSB (2005) Material characterization via least squares support vector machines. Model Simul Mater Sci Eng 13:993–1004

    Article  CAS  Google Scholar 

  44. Huber N, Tsagrakis I, Tsakmakis Ch (2000) Determination of constitutive properties of think metallic films on substrates by spherical indentation using neural networks. Int J Solids Struct 37:6499–6516

    Article  Google Scholar 

  45. Huber N, Nix WD, Gao H (2002) Identification of elastic–plastic material parameters from pyramidal indentation of thin films. Proc R Soc Lond A 458:1593–1620

    Article  CAS  Google Scholar 

  46. Tho KK, Swaddiwudhipong S, Liu ZS, Hua J (2004) Artificial neural network model for material characterization by indentation. Model Simul Mater Sci Eng 12:1055–1062

    Article  Google Scholar 

  47. Abdalla JA, Hawileh R (2011) Modeling and simulation of low-cycle fatigue life of steel reinforcing bars using artificial neural network. J Frankl Inst 348:1393–1403

    Article  Google Scholar 

  48. Manson SS (1953) Behavior of materials under conditions of thermal stress. In: Heat transfer symposium. University of Michigan Engineering Research Institute, Ann Arbor, pp 9–75

    Google Scholar 

  49. Coffin LF Jr (1954) A study of the effects of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng 76:931–950

    Google Scholar 

  50. Koh SK, Stephens RI (1991) Mean stress effects on low cycle fatigue for a high strength steel. Fatigue Fract Eng Mater Struct 14(4):413–428

    Article  Google Scholar 

  51. Lee JA, Almond DP, Harris B (1999) The use of neural networks for the prediction of fatigue lives of composite materials. Compos Part A Appl Sci Manuf 30:1159–1169

    Google Scholar 

  52. Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN, Kalidindi SR (2014) Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov 3:90–108

    Article  Google Scholar 

  53. Zhang L, Lei J, Zhou Q, Wang Y (2015) Using genetic algorithm to optimize parameters of support vector machine and its application in material fatigue life prediction. Adv Nat Sci 8:21–26

    Google Scholar 

  54. Ji DM (2011) Study on the fatigue life of P91 steel creep based on support vector machine. Pressure Vessel 28(15):15–21

    CAS  Google Scholar 

  55. Verma A, Parashar A, Packirisamy M (2018) Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review. Wiley Interdisc Rev Comput Mol Sci 8(3):e1346

    Article  Google Scholar 

  56. Verma A, Singh VK, Verma SK, Sharma A (2016) Human hair: a biodegradable composite fiber—a review. Int J Waste Resour 6(206):2

    Google Scholar 

  57. Verma A, Singh VK (2019) Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. J Test Eval 47(2):1193–1215

    Article  CAS  Google Scholar 

  58. Verma A, Parashar A (2018) Structural and chemical insights into thermal transport for strained functionalised graphene: a molecular dynamics study. Mater Res Express 5(11):115605

    Article  Google Scholar 

  59. Verma A, Negi P, Singh VK (2019) Experimental analysis on carbon residuum transformed epoxy resin: chicken feather fiber hybrid composite. Polym Compos 40(7):2690–2699

    Article  CAS  Google Scholar 

  60. Verma A, Gaur A, Singh VK (2017) Mechanical properties and microstructure of starch and sisal fiber biocomposite modified with epoxy resin. Mater Perform Charact 6(1):500–520

    CAS  Google Scholar 

  61. Verma A, Parashar A, Packirisamy M (2019) Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl Surf Sci 470:1085–1092

    Article  CAS  Google Scholar 

  62. Verma A, Budiyal L, Sanjay MR, Siengchin S (2019) Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polym Eng Sci 59(10):2041–2051

    Article  CAS  Google Scholar 

  63. Verma A, Negi P, Singh VK (2018) Physical and thermal characterization of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite. Adv Civ Eng Mater 7(1):538–557

    CAS  Google Scholar 

  64. Verma A, Negi P, Singh VK (2018) Experimental investigation of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite: mechanical and microstructural characterization. J Mech Behav Mater 27(3–4)

    Google Scholar 

  65. Chaurasia A, Verma A, Parashar A, Mulik RS (2019) Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C 123(32):20059–20070

    Article  CAS  Google Scholar 

  66. Jain N, Verma A, Singh VK (2019) Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Mater Res Express 6(10):105373

    Article  CAS  Google Scholar 

  67. Verma A, Joshi K, Gaur A, Singh VK (2018) Starch-jute fiber hybrid biocomposite modified with an epoxy resin coating: fabrication and experimental characterization. J Mech Behav Mater 27(5–6)

    Google Scholar 

  68. Verma A, Kumar R, Parashar A (2019) Enhanced thermal transport across a bi-crystalline graphene–polymer interface: an atomistic approach. Phys Chem Chem Phys 21(11):6229–6237

    Article  CAS  Google Scholar 

  69. Verma A, Singh VK (2016) Experimental investigations on thermal properties of coconut shell particles in DAP solution for use in green composite applications. J Mater Sci Eng 5(3):1000242

    Google Scholar 

  70. Verma A, Singh VK, Arif M (2016) Study of flame retardant and mechanical properties of coconut shell particles filled composite. Res Rev J Mater Sci 4(3):1–5

    Google Scholar 

  71. Verma A, Parashar A, Jain N, Singh VK, Rangappa SM, Siengchin S (2020) Surface modification techniques for the preparation of different novel biofibers for composites. In: Biofibers and biopolymers for biocomposites. Springer, Cham, pp 1–34

    Google Scholar 

  72. Rastogi S, Verma A, Singh VK (2020) Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Mater Perform Charact 9(1):151–172

    Google Scholar 

  73. Bharath KN, Madhu P, Gowda TG, Verma A, Sanjay MR, Siengchin S (2020) A novel approach for development of printed circuit board from biofiber based composites. Polym Compos 41(11):4550–4558

    Article  CAS  Google Scholar 

  74. Verma A, Jain N, Parashar A, Gaur A, Sanjay MR, Siengchin S (2021) Lifecycle assessment of thermoplastic and thermosetting bamboo composites. In: Bamboo fiber composites. Springer, Singapore, pp 235–246

    Google Scholar 

  75. Singh K, Jain N, Verma A, Singh VK, Chauhan S (2020) Functionalized graphite-reinforced cross-linked poly (vinyl alcohol) nanocomposites for vibration isolator application: morphology, mechanical, and thermal assessment. Mater Perform Charact 9(1):215–230

    Google Scholar 

  76. Verma A, Parashar A (2018) Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide. Nanotechnology 29(11):115706

    Article  Google Scholar 

  77. Verma A, Parashar A (2017) The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene. Phys Chem Chem Phys 19(24):16023–16037

    Article  CAS  Google Scholar 

  78. Verma A, Parashar A, Packirisamy M (2018) Tailoring the failure morphology of 2D bicrystalline graphene oxide. J Appl Phys 124(1):015102

    Article  Google Scholar 

  79. Singla V, Verma A, Parashar A (2018) A molecular dynamics based study to estimate the point defects formation energies in graphene containing STW defects. Mater Res Express 6(1):015606

    Article  Google Scholar 

  80. Verma A, Parashar A (2018) Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene. Comput Mater Sci 143:15–26

    Article  CAS  Google Scholar 

  81. Verma A, Zhang W, van Duin AC (2021) ReaxFF reactive molecular dynamics simulations to study the interfacial dynamics between defective h-BN nanosheet and water nanodroplets. Phys Chem Chem Phys 23:10822–10834

    Article  CAS  Google Scholar 

  82. Verma A, Parashar A, Packirisamy M (2019) Role of chemical adatoms in fracture mechanics of graphene nanolayer. Mater Today Proc 11:920–924

    Article  CAS  Google Scholar 

  83. Verma A, Parashar A (2020) Characterization of 2D nanomaterials for energy storage. In: Recent advances in theoretical, applied, computational and experimental mechanics. Springer, Singapore, pp 221–226

    Google Scholar 

  84. Verma A, Jain N, Parashar A, Singh VK, Sanjay MR, Siengchin S (2020) Design and modeling of lightweight polymer composite structures. In: Lightweight polymer composite structures: design and manufacturing techniques, Chap 7. Taylor & Francis Group (CRC Press), Boca Raton, pp 193–224

    Google Scholar 

  85. Verma A, Jain N, Parashar A, Singh VK, Sanjay MR, Siengchin S (2020) Lightweight graphene composite materials. In: Lightweight polymer composite structures: design and manufacturing techniques, Chap 1. Taylor & Francis Group (CRC Press), Boca Raton, pp 1–20

    Google Scholar 

  86. Verma A, Parashar A, Singh SK, Jain N, Sanjay MR, Siengchin S (2020) Modeling and simulation in polymer coatings. In: Polymer coatings: technologies and applications, Chap 16. Taylor & Francis Group (CRC Press), Boca Raton, pp 309–324

    Google Scholar 

  87. Verma A, Jain N, Rastogi S, Dogra V, Sanjay MR, Siengchin S, Mansour R (2020) Mechanism, anti-corrosion protection and components of anti-corrosion polymer coatings. In: Polymer coatings: technologies and applications, Chap 4. Taylor & Francis Group (CRC Press), Boca Raton, pp 53–66

    Google Scholar 

  88. Verma A, Jain N, Kalpana, Sanjay MR, Siengchin S, Jawaid M (2020) Natural fibers based bio-phenolic composites. In: Phenolic polymers based composite materials, Chap 10. Springer Nature, Singapore, pp 153–168

    Google Scholar 

  89. Bharath KN, Madhu P, Gowda TY, Verma A, Sanjay MR, Siengchin S (2021) Mechanical and chemical properties evaluation of sheep wool fiber-reinforced vinylester and polyester composites. Mater Perform Charact 10(1):99–109

    CAS  Google Scholar 

  90. Marichelvam MK, Manimaran P, Verma A, Sanjay MR, Siengchin S, Kandakodeeswaran K, Geetha M (2021) A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: an experimental approach. Polym Compos 42(1):512–521

    Article  CAS  Google Scholar 

  91. Chaudhary A, Sharma S, Verma A (2022) Optimization of WEDM process parameters for machining of heat treated ASSAB’88 tool steel using response surface methodology (RSM). Mater Today Proc 50:917–922

    Google Scholar 

  92. Chaudhary A, Sharma S, Verma A (2022) WEDM machining of heat treated ASSAB’88 tool steel: a comprehensive experimental analysis. Mater Today Proc 50:946–951

    Google Scholar 

  93. Verma A, Singh VK (2016) Experimental characterization of modified epoxy resin assorted with almond shell particles. ESSENCE-Int J Environ Rehabil Conserv 7(1):36–44

    Google Scholar 

  94. Verma A, Samant SS (2016) Inspection of hydrodynamic lubrication in infinitely long journal bearing with oscillating journal velocity. J Appl Mech Eng 5(3):1–7

    Google Scholar 

  95. Verma A, Parashar A, Jain N, Singh VK, Rangappa SM, Siengchin S (2020) Surface modification techniques for the preparation of different novel biofibers for composites. Biofibers Biopolymers Biocomposites 1–34

    Google Scholar 

  96. Bisht N, Verma A, Chauhan S, Singh VK (2021) Effect of functionalized silicon carbide nano-particles as additive in cross-linked PVA based composites for vibration damping application. J Vinyl Add Tech 27(4):920–932

    Article  CAS  Google Scholar 

  97. Kataria A, Verma A, Sanjay MR, Siengchin S (2022) Molecular modeling of 2D graphene grain boundaries: mechanical and fracture aspects. Mater Today Proc 52:2404–2408

    Google Scholar 

  98. Arpitha GR, Verma A, Sanjay MR, Siengchin S (2021) Preparation and experimental investigation on mechanical and tribological performance of hemp-glass fiber reinforced laminated composites for lightweight applications. Adv Civ Eng Mater 10(1):427–439

    CAS  Google Scholar 

  99. Deji R, Verma A, Kaur N, Choudhary BC, Sharma RK (2022) Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon. Mater Today Proc 54(3):771–776

    Article  CAS  Google Scholar 

  100. Deji R, Verma A, Choudhary BC, Sharma RK (2022) New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: a DFT approach. J Mol Graph Model 111:108109. https://doi.org/10.1016/j.jmgm.2021.108109

    Article  CAS  Google Scholar 

  101. Deji R, Jyoti R, Verma A, Choudhary BC, Sharma RK (2022) A theoretical study of HCN adsorption and width effect on co-doped armchair graphene nanoribbon. Comput Theor Chem 1209:113592

    Article  Google Scholar 

  102. Deji R, Verma A, Kaur N, Choudhary BC, Sharma RK (2022) Adsorption chemistry of co-doped graphene nanoribbon and its derivatives towards carbon based gases for gas sensing applications: quantum DFT investigation. Mater Sci Semicond Process 146:106670

    Article  Google Scholar 

  103. Verma A, Jain N, Singh K, Singh VK, Rangappa SM, Siengchin S (2022) PVA-based blends and composites. In: Biodegradable polymers, blends and composites. Woodhead Publishing, UK, pp 309–326

    Google Scholar 

  104. Verma A, Jain N, Mishra RR (2022) Applications and drawbacks of epoxy/natural fiber composites. In: Handbook of epoxy/fiber composites. Springer, Singapore, pp 1–15

    Google Scholar 

  105. Lila MK, Verma A, Bhurat SS (2022) Impact behaviors of epoxy/synthetic fiber composites. In: Handbook of epoxy/fiber composites. Springer, Singapore, pp 1–18

    Google Scholar 

  106. Verma A, Jain N, Sanjay MR, Siengchin S (2022) Viscoelastic properties of completely biodegradable polymer-based composites. In: Vibration and damping behavior of biocomposites. CRC Press, Boca Raton, pp 173–188

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the monetary support provided by the University of Petroleum and Energy Studies (UPES)-SEED Grant program.

Conflicts of Interest

“There are no conflicts of interest to declare by the authors.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akarsh Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, N., Verma, A., Ogata, S., Sanjay, M.R., Siengchin, S. (2022). Application of Machine Learning in Determining the Mechanical Properties of Materials. In: Kushvaha, V., Sanjay, M.R., Madhushri, P., Siengchin, S. (eds) Machine Learning Applied to Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-6278-3_5

Download citation

Publish with us

Policies and ethics