Skip to main content

Heavy Metal Transporters, Phytoremediation Potential, and Biofortification

  • Chapter
  • First Online:
Plant Metal and Metalloid Transporters

Abstract

For the normal growth and functioning, along with the macronutrients, plants also require essential micronutrients such as Cu, Zn, Mn, Fe, Ni, and Co, but they are needed in very small quantity; if the concentration and accumulation of these elements exceed the limits, it will become toxic to the plants. Here we can see the role of metal transporters; they aid in absorption, sequestration, and storage of these metals. This chapter focuses on the importance and the functions of the metal transport protein classes like CDF family, NRAMPs, ZIP family, ABC transporters, and CAX family in maintaining metal homeostasis. Another issue is that due to high concentration of heavy metals in the soil, these enter into the food chain which may pose threat to the human population; hence the context of phytoremediation becomes pertinent, which is a technique where hyperaccumulating plants/trees are grown for the removal or remediating the heavy metals present in the soil. We explain about various aspects taken into account to estimate the potential of the plant in sequestering the heavy metals from the soil, various ways of phytoremediation. Now-a-days, we are putting loads of pressure on land and resources to increase the yield of the product, but very little emphasis is given on improving (especially micronutrients) and conserving the nutritional qualities of the product; therefore, we can see that malnutrition is becoming very prominent in this era where about half of the world population suffers from the malnutrition of iron, zinc, and selenium; hence, biofortification comes into account, in which plants can be fortified either by agronomic practices or through breeding or by using biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABC transporters:

ATP-binding cassette transporter

Ag2+:

Gold

ATP:

Adenosine triphosphate

BCF:

Bioconcentration factor

Ca:

Calcium

CAX:

Cation exchanger

Cd2+:

Cadmium

CDF:

Cation diffusion facilitators

CDF:

Cation diffusion facilitators

Co2+:

Cobalt

COPT:

Copper transporters

COPT:

Copper transporters

Cr:

Chromium

Cs:

Cesium

Cu2+:

Copper

dgl:

Deglycyrrhizinated licorice

DW:

Dry weight

EDTA:

Ethylenediamine tetra acetic acid

Fe2+:

Nickel

frd3:

Ferric reductase defective 3

g:

Gram

GLS:

Glucosinolates

GM:

Genetically modified

Hg2+:

Mercury

HM:

Heavy metal

I:

Iodine

Mg:

Magnesium

mg:

Milligrams

Mn2+:

Manganese

Mo:

Molybdenum

MOT1:

Molybdate transporter type 1

Ni2+:

Iron

NRAMP:

Natural resistance-associated macrophage proteins

Pb2+:

Lead

Se:

Selenium

Sr:

Strontium

U:

Uranium

YSL transporters:

Yellow stripe-like proteins

ZIP:

Zinc resistance transporter, Iron-resistance transporter-like proteins

Zn2+:

Zinc

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Awofolu OR (2005) A survey of trace metals in vegetation, soil and lower animal along some selected major roads in metropolitan city of Lagos. Environ Monit Assess 105(1):431–447

    Article  CAS  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46(1):84–101

    Article  CAS  PubMed  Google Scholar 

  • Banuelos GS (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ Pollut 144(1):19–23

    Article  CAS  PubMed  Google Scholar 

  • Bañuelos GS, Roche JD, Robinson J (2010) Developing selenium-enriched animal feed and biofuel from canola planted for managing Se-laden drainage waters in the Westside of Central California. Int J Phytoremediation 12(3):243–254

    Article  PubMed  Google Scholar 

  • Beard SJ, Hashim R, Membrillo-Hernández J, Hughes MN, Poole RK (1997) Zinc (II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25(5):883–891

    Article  CAS  PubMed  Google Scholar 

  • Bhatia P, Aureli FD, Amato M, Prakash R, Cameotra SS, Nagaraja TP, Cubadda F (2013) Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem 140(1–2):225–230

    Article  CAS  PubMed  Google Scholar 

  • Blancquaert D, De Steur H, Gellynck X, Van Der Straeten D (2014) Present and future of folate biofortification of crop plants. J Exp Bot 65(4):895–906

    Article  CAS  PubMed  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860–865

    Article  Google Scholar 

  • Bouis HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132(3):491S–494S

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(1_Suppl 1):S31–S40

    Article  PubMed  Google Scholar 

  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I, Kutman UÁ (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69(1):172–180

    Article  Google Scholar 

  • Chaffai R, Koyama H (2011) Heavy metal tolerance in Arabidopsis thaliana. Adv Bot Res 60:1–49

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162(2–3):1514–1521

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Mitra A, Datta S, Veer V (2013) Phytoremediation protocols: an overview. In: Plant-based remediation processes. pp 1–18

    Google Scholar 

  • Chew SC, Loh SP, Khor GL (2012) Determination of folate content in commonly consumed Malaysian foods. Int Food Res J 19(1)

    Google Scholar 

  • Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, Rengel et al (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33(5):374–391

    Article  CAS  Google Scholar 

  • Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2(4):310–325

    Article  CAS  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133(3):1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4(3):464–476

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18(1):441–469

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderiusn M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93(11):5624–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erakhrumen AA, Agbontalor A (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2(7):151–156

    Google Scholar 

  • Fageria NK, Filho MB, Moreira A, Guimarães CM (2009) Foliar fertilization of crop plants. J Plant Nutr 32(6):1044–1064

    Article  CAS  Google Scholar 

  • Fajardo V, Alonso-Aperte E, Varela-Moreiras G (2017) Total folate content in ready-to-eat vegetable meals from the Spanish market. J Food Compos Anal 64:223–231

    Article  CAS  Google Scholar 

  • Fan MS, Zhao FJ, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP (2008) Evidence of decreasing mineral density in wheat grain over the last 160 years. J Trace Elem Med Biol 22(4):315–324

    Article  CAS  PubMed  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. In: Zinc biochemistry, physiology, and homeostasis. pp 65–84

    Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86(13):2213–2220

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18

    Google Scholar 

  • Gisbert C, Clemente R, Navarro-Avinó J, Baixauli C, Ginér A, Serrano R et al (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56(1):19–27

    Article  CAS  Google Scholar 

  • Grusak MA (2000) Strategies for improving the iron nutritional quality of seed crops: lessons learned from the study of unique iron-hyperaccumulating pea mutants. Pisum Genet 32:1–5

    Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta (BBA) Biomembr 1465(1–2):190–198

    Article  CAS  Google Scholar 

  • Hall JÁ, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hess R, Schmid B (2002) Zinc supplement overdose can have toxic effects. J Paediatr Haematol/Oncol 24:582–584

    Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39(10):843–907

    Article  CAS  Google Scholar 

  • Inaba M, Macer D (2004) Policy, regulation and attitudes towards agricultural biotechnology in Japan

    Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9(3):215–288

    Article  CAS  Google Scholar 

  • Khan MA, Ahmad I, Rahman IU (2007) Effect of environmental pollution on heavy metals content of Withaniasomnifera. J Chin Chem Soc 54(2):339–343

    Article  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJ, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379(6566):635–638

    Article  Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC et al (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182(2):392–404

    Article  CAS  PubMed  Google Scholar 

  • Lin ZQ, Haddad S, Hong J, Morrissy J, Bañuelos GS, Zhang LY (2014) Use of selenium-contaminated plants from phytoremediation for production of selenium-enriched edible mushrooms. In: Selenium in the environment and human health. pp 124–126

    Google Scholar 

  • Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272(18):11763–11769

    Article  CAS  PubMed  Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspicaerulescens. Plant Physiol 128(4):1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud E, Abd El-Kader N (2015) Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degrad Dev 26(8):819–824

    Article  Google Scholar 

  • Malekif S, Chaichi MR, Mazaheri D, Tavakkol AR, Savaghebi G (2011) Barley grain mineral analysis as affected by different fertilizing systems and by drought stress

    Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. In: Fertilizers and environment. Springer, Dordrecht, pp 5–11

    Chapter  Google Scholar 

  • Newman MC, Unger MA (2003) Fundamentals of ecotoxicology. Lewis Publishers, Boca Raton, FL, p 458

    Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17:4

    Google Scholar 

  • Nosheen A, Bano A, Ullah F (2011) Nutritive value of canola (Brassica napus L.) as affected by plant growth promoting rhizobacteria. Eur J Lipid Sci Technol 113(11):1342–1346

    Article  CAS  Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156(2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videaa JR, Lopeza ML, Narayana M, Saupea G, Gardea-Torresdeya J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  Google Scholar 

  • Petris MJ (2004) The SLC31 (Ctr) copper transporter family. Pflügers Archiv 447(5):752–755

    Article  CAS  PubMed  Google Scholar 

  • Pieper DH, dos Santos VAM, Golyshin PN (2004) Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr Opin Biotechnol 15(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Peñarrubia L (2009) Placing metal micronutrients in context: transport and distribution in plants. Curr Opin Plant Biol 12(3):299–306

    Article  CAS  PubMed  Google Scholar 

  • Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc-and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics J 4(7):377–383

    CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Phytoremediation of metal-contaminated soils. Springer, Dordrecht. pp 25–52

    Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Fron Plant Sci 4:144

    Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PE (1998) The potential of Thlaspicaerulescens for phytoremediation of contaminated soils. Plant Soil 203(1):47–56

    Article  CAS  Google Scholar 

  • Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14(8):1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouached H (2013) Recent developments in plant zinc homeostasis and the path toward improved biofortification and phytoremediation programs. Plant Signal Behav 8(1):e22681

    Article  PubMed  Google Scholar 

  • Saier MH Jr (1999) Genome archeology leading to the characterization and classification of transport proteins. Curr Opin Microbiol 2(5):555–561

    Article  CAS  PubMed  Google Scholar 

  • Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health. In: Int conference on the environ hazards mitigation, Cairo Univ Egypt. pp 542–556

    Google Scholar 

  • Salt DE, Smith RD (1998) Raskin. Phytoremediation 49:643–668

    CAS  Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Sec 2(1):9–17

    Article  Google Scholar 

  • Samuelsen AI, Martin RC, Mok DW, Mok MC (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118(1):51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279(15):15348–15355

    Article  PubMed  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90(6):925–937

    Article  CAS  PubMed  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Supekova L, Nelson H, Nelson N (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci U S A 93(10):5105–5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supek F, Supekova L, Nelson H, Nelson N (1997) Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. J Exp Biol 200(2):321–330

    Article  CAS  PubMed  Google Scholar 

  • Szczygłowska M, Piekarska A, Konieczka P, Namieśnik J (2011) Use of brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12(11):7760–7771

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19(5):466–469

    Article  CAS  PubMed  Google Scholar 

  • Tamura H, Honda M, Sato T, Kamachi H (2005) Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J Plant Res 118(5):355–359

    Article  PubMed  Google Scholar 

  • Thelwell C, Robinson NJ, Turner-Cavet JS (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci U S A 95(18):10728–10733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131(1):147–154

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13(3):195–206

    Article  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119(3):1047–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Ginneken L, Meers E, Guisson R et al (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15(4):227–236

    Article  Google Scholar 

  • Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Google Scholar 

  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131(3):886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe KN, Sassa Y, Suda E, Chen CH, Inaba M, Kikuchi A (2005) Global political, economic, social and technological issues on transgenic crops. Plant Biotechnol 22(5):515–522

    Article  Google Scholar 

  • Wesseler J, Zilberman D (2014) The economic power of the Golden Rice opposition. Environ Dev Econ 19(6):724–742

    Article  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  PubMed  Google Scholar 

  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 180(4575):37–38

    Article  CAS  Google Scholar 

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80(3):623–633

    Article  CAS  Google Scholar 

  • Winkler JT (2011) Biofortification: improving the nutritional quality of staple crops. In: Access not excess. Smith-Gordon. pp 100–112

    Google Scholar 

  • World Health Organization (2002) The world health report 2002: reducing risks, promoting healthy life. World Health Organization

    Google Scholar 

  • Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MF, Faisal M, Pilon-Smits EA (2015) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386(1):385–394

    Article  CAS  Google Scholar 

  • Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27(3):715–721

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300(1–3):167–177

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspicaerulescens. Plant Soil 249(1):37–43

    Article  CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  CAS  PubMed  Google Scholar 

  • Zu YQ (2005) Hyperaccumulator of Pb, Zn, and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31(5):755–762

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, S.S., Kumar, P., Dwivedi, P. (2022). Heavy Metal Transporters, Phytoremediation Potential, and Biofortification. In: Kumar, K., Srivastava, S. (eds) Plant Metal and Metalloid Transporters. Springer, Singapore. https://doi.org/10.1007/978-981-19-6103-8_18

Download citation

Publish with us

Policies and ethics