Skip to main content

Relationship Between Target and Specific Action of Antibody-Drug Conjugates

  • Chapter
  • First Online:
Antibody-Drug Conjugates and Cellular Metabolic Dynamics
  • 386 Accesses

Abstract

Antibody-based therapies developed very fast in clinical cancer treatment areas in recent years. Monoclonal antibodies, antibody drug conjugates, and other antibody derivatives all performed benign anti-tumor effects in clinical treatment, which make these therapies a promising future. However, these antibody-based agents all target tumor associated antigens (TAAs) while tumor specific antigens (TSAs), which brings drug resistance and adverse effects. A new type of entigen should be digged and developed for future antibody-based therapies. In this chapter, we discuss tumor-associated antigen, tumor-specific antigens on cell membrane, and several mutant peptides MHC I for de novo antibody-based drug antigen research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poon KA, Flagella K, Beyer J, Tibbitts J, Kaur S, Saad O, et al. Preclinical safety profile of trastuzumab emtansine (T-DM1): mechanism of action of its cytotoxic component retained with improved tolerability. Toxicol Appl Pharmacol. 2013;273:298–313.

    Article  CAS  PubMed  Google Scholar 

  2. Sapra P, Damelin M, DiJoseph J, Marquette K, Geles KG, Golas J, et al. Long-term tumor regression induced by an antibody-drug conjugate that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells. Mol Cancer Ther. 2013;12:38.

    Article  CAS  PubMed  Google Scholar 

  3. York IA, Rock KL. Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol. 1996;14:369–96.

    Article  CAS  PubMed  Google Scholar 

  4. Skora AD, Douglass J, Hwang MS, Tam AJ, Blosser RL, Gabelli SB, et al. Generation of MANAbodies specific to HLA-restricted epitopes encoded by somatically mutated genes. Proc Natl Acad Sci. 2015;112:9967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature. 1973;243:290.

    Article  CAS  PubMed  Google Scholar 

  6. Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, et al. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood. 2001;98:2887.

    Article  CAS  PubMed  Google Scholar 

  7. Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant JP, et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest. 1998;101:2290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kessler JH, Bres-Vloemans SA, van Veelen PA, de Ru A, Huijbers IJG, Camps M, et al. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes. Leukemia. 2006;20:1738.

    Article  CAS  PubMed  Google Scholar 

  9. Hodis E, Watson Ian R, Kryukov Gregory V, Arold Stefan T, Imielinski M, Theurillat J-P, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44:1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubinstein JC, Sznol M, Pavlick AC, Ariyan S, Cheng E, Bacchiocchi A, et al. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J Transl Med. 2010;8:67.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lovly CM, Dahlman KB, Fohn LE, Su Z, Dias-Santagata D, Hicks DJ, et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One. 2012;7:e35309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andersen MH, Fensterle J, Ugurel S, Reker S, Houben R, Guldberg P, et al. Immunogenicity of constitutively active V599E BRaf. Cancer Res. 2004;64:5456–60.

    Article  CAS  PubMed  Google Scholar 

  14. Somasundaram R, Swoboda R, Caputo L, Otvos L, Weber B, Volpe P, et al. Human leukocyte antigen-A2–restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res. 2006;66:3287–93.

    Article  CAS  PubMed  Google Scholar 

  15. Laghi L, Orbetegli O, Bianchi P, Zerbi A, Di Carlo V, Boland CR, et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene. 2002;21:4301.

    Article  CAS  PubMed  Google Scholar 

  16. Roberts PJ, Stinchcombe TE. KRAS mutation: should we test for it, and does it matter? J Clin Oncol. 2013;31:1112–21.

    Article  CAS  PubMed  Google Scholar 

  17. Weng TY, Yen MC, Huang CT, Hung JJ, Chen YL, Chen WC, et al. DNA vaccine elicits an efficient antitumor response by targeting the mutant Kras in a transgenic mouse lung cancer model. Gene Ther. 2014;21:888.

    Article  CAS  PubMed  Google Scholar 

  18. Wang QJ, Yu Z, Griffith K, Hanada K-i, Restifo NP, Yang JC. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol Res. 2016;4:204.

    Article  CAS  PubMed  Google Scholar 

  19. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers mechanisms of acquired resistance to EGFR-TKI therapy. Clin Cancer Res. 2013;19:2240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ji W, Choi C-M, Rho JK, Jang SJ, Park YS, Chun S-M, et al. Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer. BMC Cancer. 2013;13:606.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Watanabe M, Kawaguchi T, Isa S-i, Ando M, Tamiya A, Kubo A, et al. Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non–small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res. 2015;21:3552.

    Article  CAS  PubMed  Google Scholar 

  22. Gao X, Le X, Costa DB. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer. Expert Rev Anticancer Ther. 2016;16:383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada T, Azuma K, Muta E, Kim J, Sugawara S, Zhang GL, et al. EGFR T790M mutation as a possible target for immunotherapy; identification of HLA-A*0201-restricted T cell epitopes derived from the EGFR T790M mutation. PLoS One. 2013;8:e78389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li D, Bentley C, Anderson A, Wiblin S, Cleary KLS, Koustoulidou S, et al. Development of a T-cell receptor mimic antibody against wild-type p53 for cancer immunotherapy. Cancer Res. 2017;77:2699.

    Article  CAS  PubMed  Google Scholar 

  25. Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127:2705–18.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mathias MD, Sockolosky JT, Chang AY, Tan KS, Liu C, Garcia KC, et al. CD47 blockade enhances therapeutic activity of TCR mimic antibodies to ultra-low density cancer epitopes. Leukemia. 2017;31:2254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Xu Y, Xiang J, Long L, Green S, Yang Z, et al. Targeting alpha-fetoprotein (AFP)–MHC complex with CAR T-cell therapy for liver cancer. Clin Cancer Res. 2017;23:478.

    Article  CAS  PubMed  Google Scholar 

  28. Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA, Kurpad SN, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 1995;55:3140.

    CAS  PubMed  Google Scholar 

  29. Hamblett KJ, Kozlosky CJ, Siu S, Chang WS, Liu H, Foltz IN, et al. AMG 595, an Anti-EGFRvIII Antibody–Drug Conjugate, Induces Potent Antitumor Activity against EGFRvIII-Expressing Glioblastoma. Mol Cancer Ther. 2015;14:1614.

    Article  CAS  PubMed  Google Scholar 

  30. Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18:221–3.

    Article  CAS  PubMed  Google Scholar 

  31. Esposito C, Rachiglio AM, La Porta ML, Sacco A, Roma C, Iannaccone A, et al. The S492R EGFR ectodomain mutation is never detected in KRAS wild-type colorectal carcinoma before exposure to EGFR monoclonal antibodies. Cancer Biol Ther. 2013;14:1143–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Newhall K, Price T, Peeters M, Kim TW, Li J, Cascinu S, et al. Frequency of S492R mutations in the epidermal growth factor receptor analysis of plasma dna from metastatic colorectal cancer patients treated with panitumumab or cetuximab monotherapy. Ann Oncol. 2014;25:ii109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lai, J., Chen, S. (2023). Relationship Between Target and Specific Action of Antibody-Drug Conjugates. In: Chen, S., Zhan, J. (eds) Antibody-Drug Conjugates and Cellular Metabolic Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-19-5638-6_2

Download citation

Publish with us

Policies and ethics