Skip to main content

Advances in Summer Squash (Cucurbita pepo L.) Molecular Breeding Strategies

  • Chapter
  • First Online:
Smart Plant Breeding for Vegetable Crops in Post-genomics Era

Abstract

Summer squash (Cucurbita pepo L.) is a self-pollinated crop belonging to Cucurbitaceae. It is an annual crop that is grownup in tropical and subtropical areas. It is one of the most vital and economical vegetables in cultivation. Globally, squash is used as food and medicine for the presence of vitamins and antioxidants. C. pepo plants vary in shape, color and size, with several varieties and landraces. There are many types of Cucurbita species with diverse genomes and chromosome numbers. The number of summer squash chromosomes (2n) ranges from 40 to 48. Squash harbors a great diversity dependent on ploidy, regional and morphological characteristics. The introduction of new alleles through the crossing of different genetic resources for the C. pepo, for example, crossing common genotypes with locally developed genotypes with those developed locally increases genetic diversity and the preselection of characteristics of interest. A fair natural variability in the degree of phenotypes must be ensured. The main targets of squash breeders and geneticists are to enhance various desirable morphological characteristics, including tolerance to biotic and abiotic stress and crop characteristics. Achieving these targets can be comforted by using modern genomics methods to enhance the traditional breeding program. This chapter provides an outline of the shortcomings of the summer squash origin and historical background, botanical description, economic and health importance, photochemistry, cultivation requirements, biodiversity and conservation of germplasm, cytogenetics, aims and stages of squash breeding programs and traditional approaches of breeding. Additionally, it discusses new plant breeding methods involving marker-assisted breeding and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Al ZE, Khalaf-Allah MA (1973) Effect of visual selection and inbreeding on some quantitative characters of summer squash. Alex J Agric Res 21(2):277–282

    Google Scholar 

  • Abd El-Hadi AH, Zaghloul MM, Gabr AH (2004) Nature of gene action, heterosis and inbreeding depression of yield and yield component traits in squash (Cucurbita pepo L.). Zag. J Agric Res 31(6):2707–2725

    Google Scholar 

  • Abd El-Hadi AH, El-Adl A, Hamada M et al (2005) Manifestation of heterosis and genetic parameters associated with it for some vegetative and earliness traits in squash. J Agric Sci Mans Univ 30(3):1363–1379

    Google Scholar 

  • Abd El-Hadi AH, Farid SM, El-Khatib EH (2013) Combining ability and genetic variance components of a diallel crosses among some squash varieties. J Agric Sci Mans Univ 4(3):119–131

    Google Scholar 

  • Abd El-Hadi AH, El-Adl AM, Fathy HM et al (2014) Heterosis and genetic behavior of some yield and yield component traits in squash (Cucurbita pepo L.). Alex Sci Exc J 35(3):178–189. https://doi.org/10.21608/asejaiqjsae.2014.2609

    Article  Google Scholar 

  • Abd El-Maksoud MM (1986) Nature of gene action of economic traits in squash (Cucurbita pepo L.). M. Sc. Thesis, Faculty of Agriculture, Mansoura University, Egypt

    Google Scholar 

  • Abd El-Maksoud MM, El-Adl AM, Hamada MS et al (2003) Inheritance of some economical traits in squash (Cucurbita pepo L.). J Agric Sci Mans Univ 28(6):4463–4474

    Google Scholar 

  • Abd El-Rahman MM (2000) Inducing genetic variability in Citrullus colocynthis by using gamma irradiation. J Agric Sci Mans Univ 25(1):193–199

    Google Scholar 

  • Abd El-Salam MM, El-Demardash IS, Hussein AH (2010) Phenotypic stability analysis, heritability and protein patterns of snake cucumber genotypes. J Amer Sci 6(12):503–507

    Google Scholar 

  • Abdein MA (2005) Quantitative genetics of some economic traits in squash (Cucurbita pepo L). Thesis, Faculty of Agriculture, Mansoura University, Egypt, M. Sc

    Google Scholar 

  • Abdein MA (2016) The performance of parental lines and their hybrids resulted from diallel crosses mating design in squash (Cucurbita pepo L.). Ph. D. Thesis, Faculty of Agriculture, Mansoura University, Egypt

    Google Scholar 

  • Abdein MA (2018) Genetic diversity between pumpkin accessions growing in the Northern Border Region in Saudi Arabia based on biochemical and molecular parameters. Egypt J Bot 58(3):463–476. https://doi.org/10.21608/ejbo.2018.3612.1171

    Article  Google Scholar 

  • Abdein MA, Fathy HM, Hikal DM (2017) General performance, combining abilities, and heritability of yield and yield component traits in pumpkin (Cucurbita moschata Poir.) at different conditions. KMITL-STJ 17(1):121–129

    Google Scholar 

  • Abdel Sayyed SM, Mahgoub SM, Emam YT et al (2003) Genetically studies on sweet melon fruit sensory quality characters. Zaga J Agric Res 30(4):1553–1564. https://doi.org/10.1007/7397_2016_29

    Article  Google Scholar 

  • Abdel-Rahman KM (2006) Effect of pumpkin seed (Cucurbita pepo L.) diets on benign prostatic hyperplasia (BPH): chemical and morphometric evaluation in rats. World J Chem 1(1):33–40

    Google Scholar 

  • Abou El-Nasr ME, Tolba MH, Ahmed HM (2010) Combining ability for some characters in summer squash (Cucurbita pepo L.). J Plant Prod Mans Univ 1(5):663–671

    Google Scholar 

  • Acosta-Patino JL, Jimenez-Balderas E, Juarez-Oropeza MA et al (2001) Hypoglycemic action of Cucurbita ficifolia on type 2 diabetic patients with moderately high blood glucose levels. J Ethnopharmacol 77(1):99–101. https://doi.org/10.1016/s0378-8741(01)00272-0

    Article  Google Scholar 

  • Ahirwar RN, Lal JP, Singh P et al (2014) Gamma-rays and ethyl methane sulphonate induced mutation in microsperma lentil (Lens culinaris L. Medikus). SGPB 9(2):791–795

    Google Scholar 

  • Ahmed EA, Ibn-Oaf HS, El Jack AE (2003) Combining ability and heterosis in line × tester crosses of summer squash (Cucurbita pepo L.). Cucurbit Genet Coop Rep 26:54–56

    Google Scholar 

  • Ajuru M, Nmom F (2017) A review on the economic uses of species of Cucurbitaceae and their sustainability in Nigeria. Amer J Plant biol 2(1):17–24. https://doi.org/10.11648/j.ajpb.20170201.14

    Article  Google Scholar 

  • Al-Araby AA (2010) Estimation of heterosis, combining ability and heritability in inter varietals crosses of summer squash (Cucurbita pepo L.). Ph.D. Thesis, Faculty of Agriculture, Tanta University, Egypt

    Google Scholar 

  • Al-Araby ME, Ahmed SA, Omran et al (2019) Heterosis and combining ability in cucumber (Cucumis sativus L.) using line × tester analysis. Egypt J Plant Breed 23(6):1169–1194

    Google Scholar 

  • Al-Ballat IA (2008) Breeding studies on summer squash crop (Cucurbita pepo L.). M. Sc. Thesis, Faculty of Agriculture, Tanta University, Egypt

    Google Scholar 

  • Albrifcany MT (2015) Estimation of heterosis and nature of gene action for some economical traits in squash (Cucurbita pepo L.). M. Sc. Thesis, Faculty of Agriculture Mansoura University, Egypt

    Google Scholar 

  • Al-Hamdany SY, Al-Lelah HWB (2010) Estimating of heterosis and genetic variability in summer squash (Cucurbita pepo L.). J Rafedin Agric Mosul Iraq 38(4):316–327. https://doi.org/10.33899/magrj.2010.28007

    Article  Google Scholar 

  • Al-Jebory KDH (2006) Heterosis and genotypic, phenotypic and environmental correlations for several characters of summer squash. Iraqi J Agric Sci 37(3):45–58

    Google Scholar 

  • Al-Jebory KDH (2008) Estimation of some genetic parameters and heterosis for summer squash growth, yield and its NPK content. J Alanbar Agric Sci 6(1):146–157

    Google Scholar 

  • Allard RW (1971) Principles of plant breeding. Edgard Blüchner, São Paulo, p 381

    Google Scholar 

  • Al-Tamimi J, Attyaf T (2014) Genetic fingerprint of some Cucurbita pepo (summer squash) genotypes using molecular and biochemical techniques. Magazin Al-Kufa Univ Bio 6(1):2073–2086

    Google Scholar 

  • Ananthakrishnan G, Xia X, Elman C et al (2003) Shoot production in squash (Cucurbita pepo) by in Vitro organogenesis. Plant Cell Rep 21:739–746

    Article  Google Scholar 

  • Araujo EF, Mantovani EC, Da Silva RF (1982) Influence of fruit age and storage period on squash seed quality. Rev Brasil de Semen 4:77–87. https://doi.org/10.9734/JEAI/2017/36296

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218

    Article  Google Scholar 

  • Asbah AM (2007) Studies on breeding and improvement of summer squash (Cucurbita pepo L.) through mutagenesis and selection. Ph.D. Faculty of Agriculture, Ain Shams University, Egypt

    Google Scholar 

  • Badawi MA, Metwally E, Taha SS et al (2008) Large scale production of haploid plants by un-pollinated ovules culture in squash (Cucurbita pepo L). J Agric Sci Mans Univ 33(7):4981–4992

    Google Scholar 

  • Bahlgerdi M (2014) The study of plant density and planting methods on some growth characteristics, seed and oil yield of medicinal pumpkin (Cucurbita pepo Var. Styriaca, Cv. Kaki). Am J Life Sci 2:319–324. https://doi.org/10.11648/j.ajls.20140205.21

    Article  Google Scholar 

  • Bailey LH (1929) The domesticated cucurbits. Genet Herb 2:23–34

    Google Scholar 

  • Balkaya A, Kandemir D (2015) An overview of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) growing in Turkey. Azarian J Agric 2(3):57–64

    Google Scholar 

  • Balkaya A, Yıldiz S, Horuz A et al (2016) Effects of salt stress on vegetative growth parameters and ion accumulations in Cucurbit rootstock genotypes. J Plant Breed Genet 2(2):11–24

    Google Scholar 

  • Baranek M, Stift G, Vollmann J et al (2000) Genetic diversity within and between the species Cucurbita pepo, C. moschata and C. maxima as revealed by RAPD markers. Rep Cucurbit Genet Coop 23:73–77

    Google Scholar 

  • Blaylock AD (1994) Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Cooperative Extension Service, University of Wyoming, Circular B–988, p 300

    Google Scholar 

  • Bocianowski J, Nowosad K, Brzeskwiniewicz H et al (2015) Finding ranking of testers in line × tester experiments. Amer J Current Genetics 1:1–9

    Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561

    Article  Google Scholar 

  • Borghi B, Magglore T, Bogginl et al (1973) Inbreeding depression and heterosis in Cucurbita pepo L. evaluated by means of diallelical analysis. Genetical Agrouria 27(4) 415–432

    Google Scholar 

  • Bowley SR, Taylor NL (1987) Introgressive hybridization. CRC handbook of plant science in agriculture, vol 1. CRC Press, Boca Raton, FL

    Google Scholar 

  • Brewbaker JL (1964) Agricultural genetics. Prentice-Hall, Inc, Englewood Cliffs, NJ. https://doi.org/10.1002/bimj.19670090214

    Book  Google Scholar 

  • Brown RN, Myers JR (2002) A genetic map of squash (Cucurbita ssp.) with randomly amplified polymorphic DNA markers and morphological markers. J Am Soc Hortic Sci 127:568–575

    Article  Google Scholar 

  • Brush SB (1995) In Situ Conservation of landraces in centers of crop diversity. Crop Sci 35:346–354

    Article  Google Scholar 

  • Byrne PF, Volk GM, Gardner C et al (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Sci 58(2):451–468

    Article  Google Scholar 

  • Caili FU, Huan SHI, Quanhong LI (2006) A review on pharmacological activities and utilization technologies of pumpkin. Plant Food Hum Nutr 61(2):73–80. https://doi.org/10.1007/s11130-006-0016-6

    Article  Google Scholar 

  • Cardi T, D’Agostino N, Tripodi P (2017) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 8:241. https://doi.org/10.3389/fpls.2017.00241

    Article  Google Scholar 

  • Carlquist S (1992) Wood anatomy of selected Cucurbitaceae and its relationship to habit and systematics. Nord J Bot 12:347–355. https://doi.org/10.1111/j.1756-1051.1992.tb01312.x

    Article  Google Scholar 

  • Carol G, Baodi X, Dennis G (1995) Somatic embryogenesis and regeneration from cotyledon explants of six squash cultivars. HortSci 30:1295–1297

    Article  Google Scholar 

  • Carvajal F, Palma F, Jiménez-Muñoz R et al (2018) Changes in the biosynthesis of cuticular waxes during postharvest cold storage of zucchini fruit (Cucurbita pepo L.). Acta Hortic 1194:1475–1480. https://doi.org/10.17660/ActaHortic.2018.1194.206

    Article  Google Scholar 

  • Chaney L, Sharp AR, Evans CR et al (2016) Genome mapping in plant comparative genomics. Trends Plant Sci 21:770–780

    Article  Google Scholar 

  • Chee P (1991) Somatic embryogenesis and plant regeneration of squash Cucurbita pepo L cv. YC 60. Plant Cell Rep 9:620–622. https://doi.org/10.1007/BF00231801

    Article  Google Scholar 

  • Chee P (1992) Initiation and maturation of somatic embryos of squash (Cucurbita pepo). HortSci 27:59–60. https://doi.org/10.21273/HORTSCI.27.1.59

    Article  Google Scholar 

  • Choudhary H, Ram HH (2000) Characterization of indigenous muskmelon germplasm lines based on SDS-PAGE of seed protein. Veg Sci 27(1):35–38

    Google Scholar 

  • Clark RL, Widrlechner MP, Reitsma KR, Block CC (1991) Cucurbit germplasm at the north central regional plant introduction station, Ames. Iowa HortSci 26(4):326–451

    Article  Google Scholar 

  • Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellow mosaic virus in squash and cantaloupe. Plant Dis 79:1107–1109

    Article  Google Scholar 

  • Collinge DB, Jørgensen HJ, Lund OS et al (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    Article  Google Scholar 

  • Cruz-Cruz CA, González-Arnao MT, Engelman F (2013) Biotechnology and conservation of plant biodiversity. Reso 2(2):73–95. https://doi.org/10.3390/resources2020073

    Article  Google Scholar 

  • Cuevas-Marrero H, Wessel L (2008) Morphological and RAPD marker evidence of gene flow in open pollinated populations of Cucurbita moschata interplant with C. argyrosperma. In: Pitrat M (ed) Cucurbitaceae, Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. 21–24th May, 2008, INRA, Avignon (France), pp 347–352

    Google Scholar 

  • Curtis LC (1940) Heterosis in summer squash (Cucurbita pepo) and the possibilities of producing F1 hybrid seed for commercial planting. Proc Amer Soc Hort Sci 37:827–828. https://doi.org/10.13140/RG.2.2.18468.94088

    Article  Google Scholar 

  • Dahiya MS, Pandita ML, Vashistha RN (1990) Studies on variability and heritability in summer squash (Cucurbita pepo L.). Res Devlop Rep 7:102–105

    Google Scholar 

  • Dalda-Åžekerci A, Karaman K, YetiÅŸir H (2020) Characterization of ornamental pumpkin (Cucurbita pepo L. var. ovifera (L.) Alef.) genotypes: molecular, morphological and nutritional properties. Genet Resour Crop Evol 67:533–547. https://doi.org/10.1007/s10722-020-00883-x

    Article  Google Scholar 

  • Danida (2002) Assessment of potentials and constraints for development and use of plant biotechnology in relation to plant breeding and crop production in developing countries. Ministry of Foreign Affairs, Denmark

    Google Scholar 

  • Darrudi R, Nazeri V, Soltani F et al (2018) Evaluation of combining ability in Cucurbita pepo L. and Cucurbita moschata Duchesne accessions for fruit and seed quantitative traits. J Appl Res Med Aromat Plants 9:70–77. https://doi.org/10.1016/j.jarmap.2018.02.006

    Article  Google Scholar 

  • Davoodi S, Olfati JA, Hamidoghli Y et al (2016) Standard heterosis in Cucurbita moschata and Cucurbita pepo interspecific hybrids. Int J Veg Sci 22(4):383–388. https://doi.org/10.1080/19315260.2015.1042993

    Article  Google Scholar 

  • Debeaujon I, Branchard M (1993) Somatic embryogenesis in Cucurbitaceae. Plant Cell Tissue Organ Cult 34:91–100. https://doi.org/10.1007/BF00048468

    Article  Google Scholar 

  • Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot 42:4–15. https://doi.org/10.1007/BF02859022

    Article  Google Scholar 

  • Decker-Walters DS, Walters TW, Cowan CW et al (1999) Isozymic characterization of wild populations of wild populations of Cucurbita pepo. J Ethnobiol 13:55–22

    Google Scholar 

  • Del Valle Echevarria AR, Campbel A, Radovich TJ et al (2020) Quantitative trait loci (QTL) analysis of fruit and agronomic traits of tropical pumpkin (Cucurbita moschata) in an organic production system. Horticulturae 6(1):14

    Article  Google Scholar 

  • Diez MJ, Pico B, Nuez F (2002) Compilers (2002) Cucurbit genetic resources in Europe. Ad hoc meeting, 19 January 2002, IBPGR, Rome

    Google Scholar 

  • Domblides EA, Kan LY, Khimich GA et al (2018) Cytological Assessment of doubled haploids in summer squash (Cucurbita pepo L.). Vegetable Crop Russia 6:3–7. https://doi.org/10.18619/2072-9146-2018-6-3-7

    Article  Google Scholar 

  • Douglas WN, Maluf WR, Figueira AR et al (2011) Combining ability of summer-squash lines with different degrees of parthenocarpy and PRSV-W resistance. Genet Mol Biol 34(4):616–623. https://doi.org/10.1590/S1415-47572011005000039

    Article  Google Scholar 

  • El-Adl AM, Abd El-Hadi AH, Fathy HM et al (2012) Molecular genetic evaluation of seven varieties of summer squash. J Am Sci 8(5):41–48

    Google Scholar 

  • El-Diasty ZM, Kash KS (1989) the importance of additive and non-additive genetic variances estimated from diallel and factorial mating designs in squash (Cucurbita pepo L.). II. Inbreeding depression and types of gene action associated with it. J Agric Sci Mans Univ 14(1):233–242

    Google Scholar 

  • El-Gazar TM (1981) Combining ability and manifestation of heterosis in squash (Cucurbita pepo L.). Ph. D. Thesis, Faculty of Agriculture, Mansoura University, Egypt

    Google Scholar 

  • El-Gazar TM, Zaghloul MM (1983) Inheritance of some quantitative traits in squash crosses (Cucurbita pepo L.). J Agric Sci 8(2):358–372

    Google Scholar 

  • El-Gendy SA (1999) Estimation of genetic parameters in some squash hybrids through two mating designs. Ph. D. Thesis, Faculty of Agriculture Mansoura University, Egypt

    Google Scholar 

  • Elinge CM, Muhammad A, Atiku FA et al (2012) Proximate, mineral and anti-nutrient composition of pumpkin (Cucurbita pepo L.) seeds extract. Int. J Plant Res 2(5):146–150. https://doi.org/10.5923/j.plant.20120205.02

    Article  Google Scholar 

  • El-Khatib EH (2013) Genetic behavior of some economical traits in squash (Cucurbita pepo L.). M. Sc. Thesis, Faculty of Agriculture, Mansoura University, Egypt

    Google Scholar 

  • El-Shamy MM (2009) Molecular analysis of cucumber mosaic cucumovirus symptoms development on squash plants. J Appl Sci 6(8):94–103

    Google Scholar 

  • El-Sharkawy GAM (2000) An analytical study for the genetic behavior of some important characters of summer squash (Cucurbita pepo L.) using a diallel cross system among seven inbred lines of Eskandarani cultivar. M. Sc. Thesis, Faculty of Agriculture, Alexandria University, Egypt

    Google Scholar 

  • El-Shawaf LL, Abd-Alla SA, El-Aidy F et al (1986) Inheritance of yield and related traits in summer squash (Cucurbita pepo). Ann Agric Sci Moshtohor 24(2):911–928

    Google Scholar 

  • El-Shoura AM, Abed MY (2018) Heterosis and combining ability for development of squash hybrids (Cucurbita pepo L.). J Plant Prod 9(12):1181–1187

    Google Scholar 

  • El-Tahawy M (2007) Genetically studies on the most important economical characteristics of some squash cultivars in Egypt. M. Sc. Thesis, Faculty of Agriculture, Suez Canal Univ, Egypt

    Google Scholar 

  • Engelmann F (2004) Genetic resource conservation of seeds. Encyclopedia of Plant and Crop Science. Marcel Dekker Inc, New York

    Google Scholar 

  • Esteras C, Nuez F, Picó B (2011) Genetic diversity studies in Cucurbits using molecular tools. In: Wang Y, Behera TK (eds) Cucurbits: genetics, genomics and breeding in crop plants. Science Publishers, Enfield, New Hampshire., pp 25. https://doi.org/10.1201/b11436-6

    Chapter  Google Scholar 

  • Esteras C, Gómez P, Monforte AJ et al (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13(1):80

    Article  Google Scholar 

  • Fang EF, Yi CZ, Bun T et al (2011) Momordica charantialectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prevent Res 5(1):109–121

    Article  Google Scholar 

  • FAO (1996) Report on the state of the world’s plant genetic resources. Food and Agricultural Organization of the United Nation, Rome, Italy

    Google Scholar 

  • FAO (2018) FAOSTAT Agricultural Database. Food and Agriculture Organization of the United Nations, Rome, Italy http://www.fao.org/faostat/en/#data/QC/visualize)

  • Fayeun LS, Odiyi AC, Makinde SC et al (2012) Genetic variability and correlation studies in the fluted pumpkin (Telfairia occidentalis Hook F.). J Plant Breed Crop Sci 4(10):156–160. https://doi.org/10.5897/JPBCS12.011

    Article  Google Scholar 

  • Fehr RW (1987) Principles of cultivar development, vol 2. Macmillan Pub Co, New York

    Google Scholar 

  • Ferriol M, Pico B (2008) Pumpkin and winter squash. In: Prohens J, Nuez F (eds) HDB plant breeding. Springer, Heidelberg, pp 317–349

    Google Scholar 

  • Ferriol M, Picó B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282. https://doi.org/10.1007/s00122-003-1242-z

    Article  Google Scholar 

  • Firpo II, Anido FL, Gareia SM et al (1998) Heterosis in summer squash (Cucurbita pepo L). Cucurbit Genet Coop Rep 21:43–45

    Google Scholar 

  • Formisano GC, Roig C, Esteras MR et al (2012) Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genet Resour Crop Evol 59:1169–1184. https://doi.org/10.1007/s10722-011-9753-y

    Article  Google Scholar 

  • Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202

    Article  Google Scholar 

  • Fuchs M, Tricoli DM, Carney KJ et al (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis 82:1350–1356

    Article  Google Scholar 

  • Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology-the importance of virus resistance. Vitro Cell Dev Biol Plant 40(4):346–358

    Article  Google Scholar 

  • Gabr AH (2003) Nature of gene action and performance of hybrids in squash (Cucurbita pepo, L.). M. Sc. Thesis, Faculty of Agriculture, Mansoura University, Egypt

    Google Scholar 

  • García A, Aguado E, Genis P et al (2018) Phenomic and genomic characterization of a mutant platform in Cucurbita pepo. Front Plant Sci 9(1049):1–13. https://doi.org/10.3389/fpls.2018.01049

    Article  Google Scholar 

  • García A, Aguado E, Martínez C et al (2019) The ethylene receptors CpETR1A and CpETR2B cooperate in the control of sex determination in Cucurbita pepo. J Exp Bot 71(1):154–167. https://doi.org/10.1093/jxb/erz417

    Article  Google Scholar 

  • Gay C, Kerhoas C, Dumas C (1987) Quality of stress-sensitive Cucurbita pepo pollen. Planta 171:82–87. https://doi.org/10.1007/BF00395070

    Article  Google Scholar 

  • Ghai TR, Jaswinder S, Arora SK et al (1998) Heterosis studies for earliness and yield in summer squash (Cucurbita pepo L.). Punjab Veg Grower (33):35–40

    Google Scholar 

  • Gill NS, Bali M (2012) Evaluation of antioxidant, antiulcer activity of 9-β-methyl-19-norlanosta-5-ene type glycosides from Cucumis sativus seeds. Res J Med Plant 6:309–317. https://doi.org/10.3923/rjmp.2012.309.317

    Article  Google Scholar 

  • Glew RH, Glew R, Chuang L et al (2006) Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp.) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum Nutr 61(2):51–56. https://doi.org/10.1007/s11130-006-0010-z

    Article  Google Scholar 

  • Gong L, Stift G, Kofler R et al (2008) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet 117:37–48. https://doi.org/10.1007/s00122-008-0750-2

    Article  Google Scholar 

  • Gong L, Paris HS, Nee MH et al (2012) Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms. Theor Appl Genet 124:875–891. https://doi.org/10.1007/s00122-011-1752-z

    Article  Google Scholar 

  • Gong L, Paris HS, Stift G et al (2013) Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis. Genet Resour Crop Evol 60:1531–1546. https://doi.org/10.1007/s10722-012-9940-5

    Article  Google Scholar 

  • Gonsalves C, Xue B, Gonsalves D (1995) Somatic embryogenesis and regeneration from cotyledon explants and six squash cultivars. HortSci 30:1295–1297. https://doi.org/10.21273/hortsci.30.6.1295

    Article  Google Scholar 

  • Gwanama C, Labuschagne MT, Botha AM (2000) Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphytica 113:19–24. https://doi.org/10.1023/A:1003936019095

    Article  Google Scholar 

  • Habiba RMM, El-Adl AMM, Othman IAH (2015) Intra and inter-specific hybrids in summer squash. J Agric Chem Biotech 6(12):597–613

    Google Scholar 

  • Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50

    Google Scholar 

  • Harris-Valle C, Esqueda M, Valenzuela–Soto E et al (2011) Tolerance to drought and salinity by Cucurbita pepo var. pepo associated with arbuscular mycorrhizal fungi of the Sonoran Desert. Agrociencia 45(8):959–970

    Google Scholar 

  • Hassanein SH, Heakel MY, Abd El-Sayyed S (1975) Heterosis and maternal effects in crosses between inbred lines of summer squash. (Cucurbita pepo L.). Zaga J Agric Res 2(1):201–213

    Google Scholar 

  • Havey M, McCreight J, Rhodes B et al (1998) Differential transmission of the Cucumis organellar genomes. Theor Appl Genet 97:122–128. https://doi.org/10.1007/s001220050875

    Article  Google Scholar 

  • Hayase H (1961) Cucurbita-crosses, XIII. Utilization of bud pollination in obtaining interspecific hybrids of C. pepo × C. maxima. Jpn J Genet 25:181–190. https://doi.org/10.1270/jsbbs1951.11.277

    Article  Google Scholar 

  • Hayes CN, Winsor JA, Stephenson AG (2005) Environmental variation influences the magnitude of inbreeding depression in Cucurbita pepo ssp. texana (Cucurbitaceae). J Evol Biol 18(1):147–155

    Article  Google Scholar 

  • Heikal A, Hadia HS, Abdel-Razzak et al (2008) Assessment of genetic relationships among and within cucurbita species using RAPD and ISSR markers. J Appl Sci Res 4(5):515–525

    Google Scholar 

  • Herklots GAC (1972) Vegetables in South-East Asia. George Allen &Unwin LTD, London

    Google Scholar 

  • Hikal DM, Abdein MA (2018) Nutritional and genetically studies on some squash varieties. Res 10(12):112–118. https://doi.org/10.7537/marsrsj101218.14

    Article  Google Scholar 

  • Hussien AH (2015) Nature of gene action and heterotic performance for yield and yield components in summer squash (Cucurbita pepo L.). J Plant Prod 6(1):29–40. https://doi.org/10.21608/jpp.2015.49274

    Article  Google Scholar 

  • Hussien AH, Hamed AA (2015) Diallel analysis for studying heterosis and combining ability of some economical yield traits in pumpkin. J Plant Prod 6(3):261–270. https://doi.org/10.3329/agric.v14i1.29097

    Article  Google Scholar 

  • Hutchins AE, Croston FE (1941) Productivity of F1 hybrids in the squash (Cucurbita maxima). Amer Soc Hort Sci Proc 39:332–336

    Google Scholar 

  • Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli and identification of the gene product. J Bacteriol 169:5429–5433

    Article  Google Scholar 

  • Ittah MS, Kwon-Ndung EH (2019) Biometrical evaluation of morphological traits in Family Cucurbitaceae in Lafia, Nigeria. J Agric Ecol Res Inter 19(2):1–9. https://doi.org/10.9734/JAERI/2019/v19i230078

    Article  Google Scholar 

  • Jang TH, Park SC, Yang JH et al (2017) Cryopreservation and its clinical applications. Integr Med Res 6(1):12–18

    Article  Google Scholar 

  • Jansi V, Rajasree V, Kumar R et al (2018) Heterosis and inbreeding depression studies in pumpkin (Cucurbita moschata Duch. ex Poir.). Electron J Plant Breed 9(3):1031–1037. https://doi.org/10.5958/0975-928X.2018.00128.X

    Article  Google Scholar 

  • Jeffrey D (1990) Appendix: an outline classification of the Cucurbitaceae. In: BATES DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University, Ithaca and London, pp 449–463

    Google Scholar 

  • Jelaska S (1972) Embryoid formation by fragments of cotyledons and hypocotyls in Cucurbita pepo. Planta (Berl) 103(3):278–280. https://doi.org/10.1007/BF00386851

    Article  Google Scholar 

  • Jelaska S (1974) Rhizogenesis of pumpkin hypocotyl explants. Physiol Plant 31:257–261

    Article  Google Scholar 

  • Jiawang L, Zhongkui S, Sen Y et al (1997) A preliminary report on the application of 60 °C gamma-rays to cucumber mutation breeding. Chin Veg 2:22–24

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  Google Scholar 

  • Kalaiselvi K, Selvi S (2016) Phytochemical screening and antioxidant activity of Cucurbita Pepo leaves. Eur J Pharm Med Res 3(6):375–377

    Google Scholar 

  • Karipçin MZ, Ä°nal B (2017) Determination of heterosis and heterobeltiosis values of salt-tolerant summer squash (Cucurbita pepo L.) genotypes and genetic relationships of parental genomes. Appl Ecol Env Res 15(4):779–796. https://doi.org/10.15666/aeer/1504_779796

    Article  Google Scholar 

  • Karlova K (2008) Cucurbitaceae genetic resources in the Czech gene bank, current status of the collection. In: Pitrat M (ed) Cucurbitaceae. INRA, Avignon, pp 281–283

    Google Scholar 

  • Kartha KK (1981) Meristem culture and cryopreservation-methods and applications. In: Thorpe TA (ed) Plant tissue culture, methods and applications in agriculture. Academic Press, New York, pp 181–212

    Chapter  Google Scholar 

  • Kartha KK, Engelmann F (1994) Cryopreservation and germplasm storage. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Springer, Dordrecht

    Google Scholar 

  • Kathiravan K, Vengedesan G, Singer S, Steinitz B, Paris HS, Gaba V (2006) Adventitious regeneration in vitro occurs a wide spectrum of squash (Cucurbita pepo) genotypes. Plant Cell Tissue Organ Cult 85:285–295

    Article  Google Scholar 

  • Katzir N, Leshzeshen E, Tzuri G et al (1998) Relationships among accessions of Cucurbita pepo based on ISSR analysis. In: McCreight JD (ed) Cucurbitaceae 98, ASHS Press, pp 331–335

    Google Scholar 

  • Katzir N, Tadmor Y, Tzuri G et al (2000) Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. Proc Cucurbitaceae Acta Hortic 510:433–439. https://doi.org/10.17660/ActaHortic.2000.510.69

    Article  Google Scholar 

  • Kaviani B (2011) Conservation of plant genetic resources by cryopreservation. Aust J Crop Sci 5(6):778–800

    Google Scholar 

  • Kawaide O, Matsuura S (1996) Cucumber (Cucumis sativus L.) mutants segregating in M2–generation after gamma-ray seed and pollen irradiation. Cucurbit Genet Coop Rep 19:4–6

    Google Scholar 

  • KaźmiÅ„ska K, Hallmann E, Korzeniewska A et al (2020) Identification of fruit-associated QTLs in winter squash (Cucurbita maxima Duchesne) using recombinant inbred lines. Genes 11(4):419

    Article  Google Scholar 

  • Khalil MA, Hassan AH (2013) Genetic Analysis in some Cucurbitaceae plants. Egypt J Genet Cytol 42:345–364. https://doi.org/10.21608/ejgc.2013.9975

    Article  Google Scholar 

  • Kintzios S, Sereti E, Bluchos P et al (2002) Growth regulator pretreatment improves somatic embryogenesis from leaves of squash (Cucurbita pepo L.) and melon (Cucumis melo L.). Plant Cell Rep 21:1–8. https://doi.org/10.1007/s00299-002-0448-x

    Article  Google Scholar 

  • Kochhar SL (1981) Tropical crops. A textbook of economic botany. Macmillan Press, London, pp 322–328

    Google Scholar 

  • Kolawole OT, Abiona FE, Kolawole SO et al (2011) Effect of Momordica charantia fruit extract on normal and alloxan diabetic rats. Inter J Pharmacol 7(4):532–535. https://doi.org/10.3923/ijp.2011.532.535

    Article  Google Scholar 

  • Koxyxob (1925) Chromosome number of three Bulgarian Plants. CR Acad Bulg Sci 17:491–494

    Google Scholar 

  • Krsnik-Rasol M, Jelaska S, Å erman D (1982) Isoperoxidases-early indicators of somatic embryoid differentiation in pumpkin tissue. Acta Bot Croat 41:33–39

    Google Scholar 

  • Kurtar ES, Balkaya A, Kandemir D (2016) Screening for salinity tolerance in developed winter squash (Cucurbita maxima) and pumpkin (Cucurbita moschata) lines. Int J Agric Sci 26(2):183–195

    Google Scholar 

  • Kurtar ES, Ahmet B, Dilek K (2017) Determination of semi-lethal (ld50) doses for mutation breeding of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Fres Envir Bull 26(5):3209–3216

    Google Scholar 

  • Kwack NC, Fujieda K (1987) Seed abortion and techniques for obtaining hybrids in interspecific crosses of Cucurbita. J Jpn Soc Hortic Sci 55(4):455–460. https://doi.org/10.2503/jjshs.55.455

    Article  Google Scholar 

  • Lebeda A, Widrlechner MP, Staub J et al (2007) Cucurbits (Cucurbitaceae: Cucumis spp., Cucurbita spp., Citrullus spp.). In: Singh RJ (ed) Genetic resources, chromosome engineering and crop improvement, Vegetable Crops, vol 3. CRC Press, Boca Raton, FL, pp 271–376. https://doi.org/10.1201/9781420009569.ch8

    Chapter  Google Scholar 

  • Lee YH, Jeon HJ, Hong KH, Kim BD (1995) Use of random amplified polymorphic DNA for linkage group analysis in an interspecific cross hybrid F2 generation of Cucurbita. J Kor Soc Hortic Sci 36:323–330

    Google Scholar 

  • Lee JM, Kubota C, Tsao SJ et al (2010) Current status of vegetable grafting: diffusion grafting techniques, automation. Sci Hortic 127:93–105. https://doi.org/10.1016/j.scienta.2010.08.003

    Article  Google Scholar 

  • Leelaprakash G, Rose JC, Gowtham BM et al (2011) In vitro antimicrobial and antioxidant activity of Momordica charantia leaves. Pharmacophore 2(4):244–252

    Google Scholar 

  • Li XZ, Liu JP, Zhang ZL (1994) Mutation in Cucurbita moschata induced by gamma-ray radiation. J Agric Sci 10(2):55–56

    Google Scholar 

  • Lima MS, Cardoso AII, Verdial MF (2003) Plant spacing and pollen quantity on yield and quality of squash seed. Hortic Bras 21:443–447. https://doi.org/10.1590/S0102-05362003000300005

    Article  Google Scholar 

  • Lira R, Tellez O, Davila P (2009) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet Resour Crop Evol 56(5):691–703. https://doi.org/10.1007/s10722-008-9394-y

    Article  Google Scholar 

  • Lopez-Bucio J, de la Vega OM, Guevara-Garcia A et al (2000) Enhanced Phosphorous Uptake in Transgenic Tobacco Plants that Overproduce Citrate. Nature Biotech 18:450–455

    Article  Google Scholar 

  • Loy B (2012) Breeding squash and pumpkins. In: Wang YH, Behera TK, Kole C (eds) Genetics, genomics and breeding of cucurbits. Science Publishers, pp 107–110

    Google Scholar 

  • Marie AK, Moualla MY, Boras MG (2012) Heterosis study of some quantity characters of squash (Cucurbita pepo L.). Damascus J Agric Sci 28(1):339–354

    Google Scholar 

  • Mario H, Bill M, Jason S et al (1997) Oregon state University Western Oregon squash irrigation guide, vol. 541. Department of Bio resource Engineering, 116 Gilmore Hall, Corvallis, pp 737–6304

    Google Scholar 

  • Martha R, Gutierrez P (2016) Review of Cucurbita pepo (Pumpkin) its photochemistry and pharmacology. Med Chem 6(1):12–21. https://doi.org/10.4172/2161-0444.1000316

    Article  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (2013) Plant genetic conservation: the in-situ approach. Springer Science and Business Media

    Google Scholar 

  • Melki M, Marouani A (2009) Effects of gamma rays irradiation on seed germination and growth of hard wheat. Environ Chem Lett 8:307–310. https://doi.org/10.1007/s10311-009-0222-1

    Article  Google Scholar 

  • Metwally EIA (1985) Inheritance studies on squash crop. Ph. D. Thesis, Faculty of Agriculture, Tanta University, Egypt

    Google Scholar 

  • Metwally ER, Khalil RM, El-Sawy BL (1988) Genetic analysis of seed yield and related traits in summer squash (Cucurbita pepo L.). Menoufia J Agri Res 13(1):431–442

    Google Scholar 

  • Michael NV, Moon P, Fu F et al (2019) Genetic diversity among accessions of Cucurbita pepo resistant to Phytophthora crown rot. HortScience 54(1):17–22. https://doi.org/10.21273/HORTSCI13506-18

    Article  Google Scholar 

  • Min ZY, Li H, Zou T et al (2016) Studies of in vitro culture and plant regeneration of unfertilized ovary of pumpkin. Chin Bull Bot 51(1):74–80

    Google Scholar 

  • Mohamed MF (1996) Phenotypic variability and selection for predominant pistil late flower expression in zucchini-type summer squash (Cucurbita pepo L.) Eskandarani. First Egyptian-Hungarian Horticultural Conference, Sept 1996, Vol 2, Kafr El-sheikh, Tanta Univ, Egypt, pp 154–162

    Google Scholar 

  • Mohamed SE, Abdein MA, Hikal DM (2018) Molecular genetic polymorphism, morphological and the effect of peels as natural antioxidants in some squash cultivars. Researcher 10(3):97–104. https://doi.org/10.7537/marsrsj100318.11

    Article  Google Scholar 

  • Mohan NB, Madalageri MB, Ravindra HG et al (2012) Hybrid vigor and inbreeding depression in ash gourd (white pumpkin). Plant Arch 12(2):749–752

    Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182

    Article  Google Scholar 

  • Montero-Pau J, Blanca J, Esteras C et al (2017) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using genotyping-by-sequencing. BMC Genomics 18(1):94

    Article  Google Scholar 

  • Montes-Hernandez S, Eguiarte LE (2002) Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in Western Mexico. Am J Bot 89:1156–1163. https://doi.org/10.3732/ajb.89.7.1156

    Article  Google Scholar 

  • Moon P, Fu Y, Meru G (2019) Genetic diversity among accessions of Cucurbita pepo resistant to Phytophthora crown rot. HortScience 54(1):17–22

    Article  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13(2):85–96

    Article  Google Scholar 

  • Müller C, Bracher F (2015) Determination by GC-IT/MS of phytosterols in herbal medicinal products for the treatment of lower urinary tract symptoms and food products marketed in Europe. Planta Med 81:613–620

    Article  Google Scholar 

  • Mulualem T, Abate M (2016) Heterotic response in major cereals and vegetable crops. Int J Plant Breed Genet 10:69–78. https://doi.org/10.3923/ijpbg.2016.69.78

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Phys Plant 15(3):473–497

    Article  Google Scholar 

  • Murkovic M, Mülleder U, Neunteufl H (2002) Carotenoid content in different varieties of pumpkins. J Food Compos Anal 15(6):633–638. https://doi.org/10.1006/jfca.2002.1052

    Article  Google Scholar 

  • Murovec J (2015) Phenotypic and genetic diversity in pumpkin accessions with mutated seed coats. Hort Sci 50(2):211–217

    Google Scholar 

  • Nabhan GP (1985) Gathering the desert. University of Arizona Press, Tucson

    Google Scholar 

  • Napier T (2009) Pumpkin production. Primefacts 964:1–8

    Google Scholar 

  • Nascimento WM, Pinheiro F, Freitas RA (2007) Evaluation of lettuce seed physiological quality under adverse temperatures. Rev Bras Sement 29(3):175–179

    Article  Google Scholar 

  • Ndoro OF, Madakadze RM, Kageler S, Mashingaid AB (2007) Indigenous knowledge of the traditional vegetable pumpkin (Cucurbita maxima/moschata) from Zimbabwe. Afr J Agric Res 2:649–655

    Google Scholar 

  • Neel R, Vandana, Najibullah M et al (2017) A review on Cucurbita pepo. Int J Pharm Phytochem Res 9(9):1190–1194. https://doi.org/10.25258/phyto.v9i09.10305

    Article  Google Scholar 

  • Ntulia NR, Tongoonab PB, Zoboloa AM (2015) Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers. Sci Hortic 189:192–200. https://doi.org/10.1016/j.scienta.2015.03.020

    Article  Google Scholar 

  • Nuez F, Fernandez de Cordova P, Ferriol M et al (2000) Cucurbita ssp. and Lagenaria siceraria collection of the genebank of the center for conservation and breeding of the agricultural biodiversity (COMAV) of the Polytechnical University of Valencia. Cucurbit Genet Coop Rep 23:60–61

    Google Scholar 

  • Obi RK, Nwanebu FC, Ndubuisi UU et al (2009) Antibacterial qualities and phytochemical screening of the oils of Cucurbita pepo and Brassica nigra. J Med Plants Res 3(5):429–432

    Google Scholar 

  • Obiadalla AHA (2006) Heterosis and nature of gene action for earliness and yield components in summer squash (Cucurbita pepo L.). Assiut J Agric Sci 37:123–135

    Google Scholar 

  • OECD (2016) Squashes, pumkins, zucchinis and gourds (Cucurbita species). In safety assessment of transgenic organisms in the environment, OECD Consensus Documents, OECD Publishing: Paris, France, Vol 5, pp 83–149

    Google Scholar 

  • Olson ME (2003) Stem and leaf anatomy of the arborescent Cucurbitaceae Dendrosicyos socotrana with comments on the evolution of pachycauls from lianas. Plant Syst Evol 239:199–214. https://doi.org/10.1007/s00606-003-0006-1

    Article  Google Scholar 

  • Pal SP, Alam I, Anisuzzaman M et al (2007) Indirect organogenesis in summer squash (Cucurbita pepo L.). Turk J Agric For 31(1):63–70

    Google Scholar 

  • Paris HS (1996) A proposed sub specific classification for Cucurbita pepo. Phytologia 61:133–138

    Google Scholar 

  • Paris HS, Padley LD (2014) Gene list for Cucurbita species. Cucurbit Genet Coop Rep 37:1–14

    Google Scholar 

  • Paris HS, Yonah N, Portnoy V et al (2003) Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor Appl Genet 106:971–978. https://doi.org/10.1007/s00122-002-1157-0

    Article  Google Scholar 

  • Patel SP, Bharodia PS, Kakade DK (2010) Concept of general and specific combining ability in relation to diallel crossing system. Int J Agric Sci 6(1):135–137

    Google Scholar 

  • Perez Gutierrez RM (2016) Review of Cucurbita pepo (Pumpkin) its Phytochemistry and Pharmacology. Med Chem 6:12–21. https://doi.org/10.4172/2161-0444.1000316

    Article  Google Scholar 

  • Phillips KM, Ruggio DM, Ashraf-Khorassani M (2005) Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Che 53(24):9436–9445. https://doi.org/10.1021/jf051505h

    Article  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  Google Scholar 

  • Puri M, Kaur I, Kanwar RK et al (2009) Ribosome inactivating proteins (RIPs) from Momordica charantia for anti-viral therapy. Curr Mol Med 9(9):1080–1094. https://doi.org/10.2174/156652409789839071

    Article  Google Scholar 

  • Ramon A, Torres-Ruiz RA, Hemleben V (1991) Use of ribosomal DNA spacer probes to distinguish cultivars of Cucurbita pepo L. and other Cucurbitaceae. Euphytica 53:11–17

    Article  Google Scholar 

  • Rathore NS, Rai MK, Phulwaria et al (2014) Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol Plant 36:555–559 doi:https://doi.org/10.1007/s11738-013-1429-0

  • Ratnam N (2017) A review on Cucurbita pepo. Int J Pharm Phytochem Res 9:1190–1194. https://doi.org/10.4172/2161-0444.1000316

    Article  Google Scholar 

  • Reitsma KR, Block CC, Clark LD (2014) Cucurbit germplasm collections at the North Central Regional Plant Introduction Station Conference: Proceedings Cucurbitaceae 2014, Bay Harbor, Michigan, USA, Cucurbitaceae, pp 125–128

    Google Scholar 

  • Robinson RW (2008) Rationale and methods for producing hybrid cucurbit seed. J New Seeds 1:1–47. https://doi.org/10.1300/J153v01n03_01

    Article  Google Scholar 

  • Rouphael Y, Colla G (2009) The Influence of drip Irrigation or subirrigation on zucchini squash grown in closed-loop substrate culture with high and low nutrient solution concentrations. HortScience 44(2):306–311

    Article  Google Scholar 

  • Ruiz JM, Belakbir A, Lopez Cantarero I et al (1997) Leaf macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Sci Hortic 71:227–234. https://doi.org/10.1016/S0304-4238(97)00106-4

    Article  Google Scholar 

  • Saboo S, Thorat P, Tapadiya G et al (2013) Ancient and recent medicinal uses of Cucurbitaceae family. Int J Ther Appl 9:11–19

    Google Scholar 

  • Sabudak T (2007) Fatty acid composition of seed and leaf oils of pumpkin, walnut, almond, maize, sunflower and melon. Chem Nat Compd 43(4):383–384. https://doi.org/10.1007/s10600-007-0163-5

    Article  Google Scholar 

  • Sáez C, Martínez C, Montero-Pau J et al (2020) A Major QTL Located in chromosome 8 of Cucurbita moschata is responsible for resistance to tomato leaf curl New Delhi virus. Front Plant Sci 11:207. https://doi.org/10.3389/fpls.2020.00207

    Article  Google Scholar 

  • Salehi B, Sharifi-Rad J, Capanoglu E et al (2019) Cucurbita plants: from farm to industry. Appl Sci 9(3387):1–21. https://doi.org/10.3390/app9163387

    Article  Google Scholar 

  • Sanin OG, Burbano LVB, Narvaez GAO et al (2014) Inbreeding and gene action in butternut squash (Cucurbita moschata) seed starch content. Rev Fac Nal Agr Medellin 67(1):7169–7175. https://doi.org/10.15446/rfnam.v67n1.42634

    Article  Google Scholar 

  • Sanín OG, Restrepo MPV, Alirio F et al (2015) Genetic correlations and path analysis in butternut squash Cucurbita moschata Duch. Rev Fac Nal Agr Medellín 68(1):7399–7409. https://doi.org/10.15446/rfnam.v68n1.47827

    Article  Google Scholar 

  • Santos MH, Rodrigues R, Gonçalves LS et al (2012) Agrobiodiversity in Cucurbita spp. landraces collected in Rio de Janeiro assessed by molecular markers. Crop Breed Appl Biotechnol 12:96–103. https://doi.org/10.1590/S1984-70332012000200001

    Article  Google Scholar 

  • Schuster W, Haghdadi MR, Michael J (1974) Inbreeding and heterosis in oil pumpkin, Cucurbita pepo L. Effect of inbreeding Zeitschrift für pflanzen zuchtung 73(1/4):112–124 Institut Für pflanzenbau Und Pflanez Zuchting, Justus Liebig Univeristat, Giessen, German Fedral Republic

    Google Scholar 

  • Sevengor S (2010) Investigations on antioxidant enzyme activities under in vitro and in vivo conditions to obtain salt tolerance in squash (Cucurbita pepo L.). Doctoral Thesis (Unpublished). Graduate School of Natural and Applied Sciences, Ankara University, Ankara, Turkey, pp 179

    Google Scholar 

  • Sevengor S, Yasar F, Kusvuran S et al (2011) The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr J Agric Res 6(21):4920–4924

    Google Scholar 

  • Shalaby TA (2007) Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Sci Hort 115(1):1–6

    Article  Google Scholar 

  • Singh DK, Ram HH (2001) Characterization of indigenous germplasm lines of cucumber (Cucumis sativus L.) through SDS-PAGE. Veg Sci 28(1):22–23

    Google Scholar 

  • Sinnott EW, Durham GB (1922) Inheritance in the summer squash. J Hered 13:177–186

    Article  Google Scholar 

  • Sisko M, Ivancic A, Bohanec B (2003) Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo rescue technique. Plant Sci 165:663–669. https://doi.org/10.1016/S0168-9452(03)00256-5

    Article  Google Scholar 

  • Soltysiak U, Kubicki B (1988) Induced mutations in the cucumber (Cucumis sativus L.). VII short hypocotyl mutant. Genetica-Polonica 29(34):315–321

    Google Scholar 

  • Spataro G, Negri V (2013) The European seed legislation on conservation varieties: focus, implementation, present and future impact on landrace on farm conservation. Genet Resour Crop Evol 60:2421–2430. https://doi.org/10.1007/s10722-013-0009-x

    Article  Google Scholar 

  • Sprague GF, Tatum LA (1942) General vs specific combining ability in single crosses of corn. J Am Soc Agron 34:923–952

    Article  Google Scholar 

  • Stevenson DG, Eller FJ, Wang L et al (2007) Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J Agric Food Chem 55(10):4005–4013. https://doi.org/10.1021/jf0706979

    Article  Google Scholar 

  • Subrahmanyam NS (2004) Modern plant taxonomy. Vikas Publishing House Pvt Ltd, New Delhi, India, pp 316–321

    Google Scholar 

  • Tamilselvi NA, Jansirani P, Pugalendhi L (2015) Estimation of heterosis and combining ability for earliness and yield characters in pumpkin (Cucurbita moschata Duch. Ex. Poir). Afr J Agric Res 10(16):1904–1912. https://doi.org/10.5897/AJAR2014.9099

    Article  Google Scholar 

  • Thompson HC, Kelly WC (1957) Vegetable crops. McGraw Hill Book Company, New York

    Book  Google Scholar 

  • Tricoli DM, Carney KJ, Russell PF et al (2002) Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. United States Patent 6(337):431

    Google Scholar 

  • Tsivelikas AL, Koutita O, Anastasiadou A et al (2009) Description and analysis of genetic diversity among squash accessions. Braz Arch Biol Technol 52(2):271–283. https://doi.org/10.1590/S1516-89132009000200003

    Article  Google Scholar 

  • Ukiya M, Akihisa T, Yasukawa K et al (2002) Anti-Inflammatory and Anti-Tumor-Promoting Effects of Cucurbitane Glycosides from the Roots of Bryonia dioica. J Nat Prod 65(2):179–183. https://doi.org/10.1021/np010423u

    Article  Google Scholar 

  • Wang Y, Wang C, Han H et al (2020) Construction of a high-density genetic map and analysis of seed related traits using specific length amplified fragment sequencing for Cucurbita maxima. Front Plant Sci 10:1782. https://doi.org/10.3389/fpls.2019.01782

    Article  Google Scholar 

  • Weeden NF (1984) Isozyme studies indicate that the genus Cucurbita is an ancient tetraploid. Rep Cucurbit Genet Coop 7(37):84–85

    Google Scholar 

  • Weeden NF, Robinson RW (1990) Isozyme studies in Cucurbita. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, New York, pp 51–59

    Google Scholar 

  • Wehner TC, Robinson RW (1991) A brief history of the development of cultivars in the U.S. Cucurbit Genetics Cooperative Report 14:1–4

    Google Scholar 

  • Whitaker TW, Davis GN (1962) Cucurbits-botany, cultivation and utilization. Leonard Hill Ltd, London, UK, p 249

    Google Scholar 

  • Whitaker TW, Flory WS (1955) Tulbagnia violacea. Description, cultural and cytological observation. Plant Life (Herberia) 11:65–67

    Google Scholar 

  • Whitaker TW, Robinson RW (1986) Squash breeding. In: Basset MJ (ed) Breeding vegetable crops. Avi Publishing Company, Westport, pp 209–242

    Google Scholar 

  • Whitwood WN, Weigle JL (1978) Compact mutations in Cucurbita pepo L. induced by ethyl methane sulfonate. Cucurbit Genet Coop 1:34

    Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  Google Scholar 

  • Williams MG, Davis A, Connor NO (2006) Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil. J Med Food 9(2):284–286. https://doi.org/10.1089/jmf.2006.9.284

    Article  Google Scholar 

  • Winkler C, Wirleitner B, Schennach H et al (2005) Extracts of pumpkin seeds suppress stimulated peripheral blood mononuclear cells in vitro. Am J Immunol 1(1):6–11. https://doi.org/10.3844/ajisp.2005.6.11

    Article  Google Scholar 

  • Xanthopoulou A, Ganopoulos I, Kalivas A et al (2015) Comparative analysis of genetic diver-sity in Greek Genebank collection of summer squash (Cucurbita pepo) land-races using start codon targeted (SCoT) polymorphism and ISSR markers. Aust J Crop Sci 9(1):14–21

    Google Scholar 

  • Xanthopoulou A, Montero-Pau J, Mellidou I et al (2019) Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horti Res 6:94. https://doi.org/10.1038/s41438-019-0176-9

    Article  Google Scholar 

  • Xiang C, Duan Y, Li Het al (2018) A high-density EST-SSR-based genetic map and QTL analysis of dwarf trait in Cucurbita pepo L. Int J Mol Sci 19(10):31–40

    Google Scholar 

  • Yadav M, Jain S, Tomar R et al (2017) Medicinal and biological potential of pumpkin: an updated review. Nutr Res Rev 23(2):184–190. https://doi.org/10.1017/S0954422410000107

    Article  Google Scholar 

  • Yongan C, Bingkui Z, Enhui Z et al (2002) Study on affinity of sexual hybridization between Cucurbita maxima D. and Cucurbita moschata D. Cucurbit Genet Cooperate Rep 25:54–55

    Google Scholar 

  • Zagorcheva L, Alexandrova M, Aleksandrova M (1985) Genetically conditioned differences in radiation sensitivity in Cucumis sativus L. proceedings of the IIIrd Eucarpia meeting on breeding of cucumbers and melons proceedings of the IIIrd Eucarpia meeting on breeding of cucumbers and melons, 2–5 July, 1984, Plovdiv, 1985, pp 34–39

    Google Scholar 

  • Zhang Q, Yu E, Medina A (2012) Development of advanced interspecific-bridge lines among Cucurbita pepo, C. maxima, and C. moschata. Hortic Sci 47(4):452–458. https://doi.org/10.21273/HORTSCI.47.4.452

    Article  Google Scholar 

  • Zhong YJ, Zhou YY, Li JX et al (2017) A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Zou T, Song H, Chu X et al (2020) Efficient induction of gynogenesis through unfertilized ovary culture with winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Sci Hortic 264:109–152

    Article  Google Scholar 

  • Zraidi A, Stift G, Pachner M et al (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled F. M. Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, A.A., Salem, K.F.M., Abdein, M.A., Ramadan, S.M. (2023). Advances in Summer Squash (Cucurbita pepo L.) Molecular Breeding Strategies. In: Singh, S., Sharma, D., Sharma, S.K., Singh, R. (eds) Smart Plant Breeding for Vegetable Crops in Post-genomics Era . Springer, Singapore. https://doi.org/10.1007/978-981-19-5367-5_8

Download citation

Publish with us

Policies and ethics