Skip to main content

The Mechanism for Establishing the Binary Sex with Environmental Signals in the Crustacean Daphnia magna

  • Chapter
  • First Online:
Spectrum of Sex

Abstract

The cladoceran crustacean Daphnia magna produces females parthenogenetically under healthy conditions. In response to environmental stresses such as starvation and higher population density, it produces males that are genetically identical to their sisters. Environment-dependent male production in D. magna can be interpreted as the shift of the position of the sex on the spectrum from the female side to the male side by the environmental cues. In this review, we introduce how the environment-dependent male determination is mediated via the endocrine system and the evolutionary conserved sex-determining gene Doublesex1 (Dsx1) in D. magna. We then describe how the binary sex can be achieved by regulation of Dsx1 at transcriptional, epigenetic, and post-transcriptional levels to prevent intersex phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747

    Article  CAS  PubMed  Google Scholar 

  • Banta AM, Brown LA (1929) Control of sex in cladocera. III. Localization of the critical period for control of sex. Proc Natl Acad Sci U S A 15:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayrer JR, Zhang W, Weiss MA (2005) Dimerization of doublesex is mediated by a cryptic ubiquitin-associated domain fold—implications for sex-specific gene regulation. J Biol Chem 280:32989–32996

    Article  CAS  PubMed  Google Scholar 

  • Bénazéraf B, Pourquié O (2013) Formation and segmentation of the vertebrate body axis. Annu Rev Cell Dev Biol 29:1–26

    Article  PubMed  Google Scholar 

  • Burtis KC, Baker BS (1989) Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56:997–1010

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Rinsma M, Janssen JM et al (2016) Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Res 44:6482–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CH, Allen AG, Sullivan NT et al (2020) Computational analysis concerning the impact of DNA accessibility on CRISPR-Cas9 cleavage efficiency. Mol Ther 28:19–28

    Article  CAS  PubMed  Google Scholar 

  • Corbitt TS, Hardie J (1985) Juvenile hormone effects on polymorphism in the pea aphid, A cyrthosiphon pisum. Entomol Exp Appl 38:131–135

    Article  Google Scholar 

  • Cornette R, Gotoh H, Koshikawa S, Miura T (2008) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J Insect Physiol 54:922–930

    Article  CAS  PubMed  Google Scholar 

  • Daer RM, Cutts JP, Brafman DA, Haynes KA (2016) The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synth Biol 6:428–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN (1978) The population biology of Daphnia (Crustacea, Daphnidae). Biol Rev 53:387–426

    Article  Google Scholar 

  • Herpin A, Schartl M (2015) Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep 16:1260–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa A, Gotoh H, Abe T, Miura T (2013) Juvenile hormone titer and wing-morph differentiation in the vetch aphid Megoura crassicauda. J Insect Physiol 59:444–449

    Article  CAS  PubMed  Google Scholar 

  • Jensen KT, Fløe L, Petersen TS et al (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett 591:1892–1901

    Article  CAS  PubMed  Google Scholar 

  • Kærn M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 66(6):451–464

    Article  Google Scholar 

  • Kato Y, Kobayashi K, Oda S et al (2010) Sequence divergence and expression of a transformer gene in the branchiopod crustacean, Daphnia magna. Genomics 95:160–165

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Kobayashi K, Watanabe H, Iguchi T (2011a) Environmental sex determination in the branchiopod crustacean Daphnia magna: deep conservation of a Doublesex gene in the sex-determining pathway. PLoS Genet 7:e1001345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Shiga Y, Kobayashi K et al (2011b) Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 220:337–345

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Perez CAG, Mohamad Ishak NS et al (2018) A 5′ UTR-overlapping lncRNA activates the male-determining gene doublesex1 in the crustacean Daphnia magna. Curr Biol 28:1811–1817.e4

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, Mendes CC, Mirth CK (2013) Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front Physiol 4:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvist J, Athanàsio CG, Pfrender ME et al (2020) A comprehensive epigenomic analysis of phenotypically distinguishable, genetically identical female and male Daphnia pulex. BMC Genomics 21(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BY, Choi BS, Kim MS et al (2019) The genome of the freshwater water flea Daphnia magna: a potential use for freshwater molecular ecotoxicology. Aquat Toxicol 210:69–84

    Article  CAS  PubMed  Google Scholar 

  • Mapes J, Chen J-T, Yu J-S, Xue D (2010) Somatic sex determination in Caenorhabditis elegans is modulated by SUP-26 repression of tra-2 translation. Proc Natl Acad Sci U S A 107:18022–18027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martienssen R, Moazed D (2015) RNAi and heterochromatin assembly. Cold Spring Harb Perspect Biol 7:a019323

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A et al (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SE (2001) Intersex and male development in Daphnia magna. Hydrobiologia 442:145–156

    Article  Google Scholar 

  • Miura T (2019) Juvenile hormone as a physiological regulator mediating phenotypic plasticity in pancrustaceans. Develop Growth Differ 61:85–96

    Article  Google Scholar 

  • Mohamad Ishak NS, Nong QD, Matsuura T et al (2017) Co-option of the bZIP transcription factor Vrille as the activator of Doublesex1 in environmental sex determination of the crustacean Daphnia magna. PLoS Genet 13:e1006953

    Article  PubMed  PubMed Central  Google Scholar 

  • Naitou A, Kato Y, Nakanishi T et al (2015) Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna. Biol Open 4:364–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakanishi T, Kato Y, Matsuura T, Watanabe H (2014) CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS One 9:e98363

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakanishi T, Kato Y, Matsuura T, Watanabe H (2016) TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna. Sci Rep 6:36252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nong QD, Mohamad Ishak NS, Matsuura T et al (2017) Mapping the expression of the sex determining factor Doublesex1 in Daphnia magna using a knock-in reporter. Sci Rep 7:13521

    Article  PubMed  PubMed Central  Google Scholar 

  • Nong QD, Matsuura T, Kato Y, Watanabe H (2020) Two Doublesex1 mutants revealed a tunable gene network underlying intersexuality in Daphnia magna. PLoS One 15:e0238256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda S, Tatarazako N, Watanabe H et al (2005) Production of male neonates in four cladoceran species exposed to a juvenile hormone analog, fenoxycarb. Chemosphere 60:74–78

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Kato Y, Watanabe H et al (2011) Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Environ Toxicol Chem 30:232–238

    Article  CAS  PubMed  Google Scholar 

  • Olmstead AW, Leblanc GA (2002) Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J Exp Zool 293:736–739

    Article  CAS  PubMed  Google Scholar 

  • Olmstead AW, LeBlanc GA (2007) The environmental-endocrine basis of gynandromorphism (intersex) in a crustacean. Int J Biol Sci 3:77–84

    Article  CAS  Google Scholar 

  • Orsini L, Gilbert D, Podicheti R et al (2017) Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors. Sci Data 4:17000

    Article  Google Scholar 

  • Ozbudak EM, Thattai M, Kurtser I et al (2002) Regulation of noise in the expression of a single gene. Nat Genet 31:69–73

    Article  CAS  PubMed  Google Scholar 

  • Perez CAG, Adachi S, Nong QD et al (2021) Sense-overlapping lncRNA as a decoy of translational repressor protein for dimorphic gene expression. PLoS Genet 17:e1009683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond CS, Murphy MW, O’Sullivan MG et al (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14:2587–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwentner M, Combosch DJ, Pakes Nelson J, Giribet G (2017) A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Curr Biol 27:1818–1824.e5

    Article  CAS  PubMed  Google Scholar 

  • Shen MM, Hodgkin J (1988) mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell 54:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Tatarazako N, Oda S, Watanabe H et al (2003) Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere 53:827–833

    Article  CAS  PubMed  Google Scholar 

  • Törner K, Nakanishi T, Matsuura T et al (2014) Optimization of mRNA design for protein expression in the crustacean Daphnia magna. Mol Gen Genomics 289:707–715

    Article  Google Scholar 

  • Toyota K, Miyakawa H, Hiruta C et al (2015) Methyl farnesoate synthesis is necessary for the environmental sex determination in the water flea Daphnia pulex. J Insect Physiol 80:22–30

    Article  CAS  PubMed  Google Scholar 

  • Wexler J, Delaney EK, Belles X et al (2019) Hemimetabolous insects elucidate the origin of sexual development via alternative splicing. Elife 8:e47490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto S, Okada E, Umemoto H et al (2008) A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci U S A 105:2469–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaffagnini F (1987) Reproduction in Daphnia. Mem Inst Ital Idrobiol 45:245–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, Y., Watanabe, H. (2022). The Mechanism for Establishing the Binary Sex with Environmental Signals in the Crustacean Daphnia magna. In: Tanaka, M., Tachibana, M. (eds) Spectrum of Sex. Springer, Singapore. https://doi.org/10.1007/978-981-19-5359-0_12

Download citation

Publish with us

Policies and ethics