Skip to main content

Starch/Carrageenan Blend-Based Biocomposites as Packaging Materials

  • Chapter
  • First Online:
Composites from the Aquatic Environment

Abstract

Synthetic polymer packaging waste is one of the major environmental problems in the world. Therefore, biodegradable material should be applied to resolve this problem. Many bio-based polymers have been developed as packaging materials to reduce the use of synthetic packaging material. Starch/carrageenan blends are biodegradable polymers having good properties as candidate materials for packaging. Biocomposite based cassava starch/carrageenan blends with reinforcement such as nanoclay, chitosan, zinc nanoparticles and natural fibers have great potential to increase their properties. This chapter provides a general overview of the biocomposite based cassava starch-carrageenan blend. The physical, chemical, and mechanical properties and prospective application of the biocomposite-based cassava starch-carrageenan blend are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diez-Pascual, A. M., & Diez-Vicente, A. L. (2014). Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties. International Journal of Molecular Sciences, 15, 10950–10973. https://doi.org/10.3390/ijms150610950

    Article  CAS  Google Scholar 

  2. Mose, B. R., & Maranga, S. M. (2011). A review on starch based nanocomposites for bioplastic materials. Journal of Materials Science and Engineering B, 1, 239–245.

    CAS  Google Scholar 

  3. López, O. V., Castillo, L. A., García, M. A., Villar, M. A., & Barbosa, S. E. (2015). Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocolloids, 43, 18–24. https://doi.org/10.1016/j.foodhyd.2014.04.021

    Article  CAS  Google Scholar 

  4. Rhim, J.-W.W., Park, H.-M.M., & Ha, C.-S.S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38, 1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  5. Rana, M. S., Mahmud, S., Hossain, M. A., Rana, M., Kabir, E., Das, A. K., & Roy, R. K. (2019). Bacteriological load in traditional food packaging paper. Journal of Advance in Microbiology, 15(2), 1–9. https://doi.org/10.9734/jamb/2019/v15i230085

    Article  Google Scholar 

  6. Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2015). Physical and antimicrobial properties of starch-PVA blend films as affected by the incorporation of natural antimicrobial agents. Foods, 5, 3. https://doi.org/10.3390/foods5010003

    Article  CAS  Google Scholar 

  7. Parolo, M., Fernandez, L., Zajonkovsky, I., Sanchez, M., & Baschini, M. (2011). Antibacterial activity of materials synthesized from clay minerals. In Science against microbial pathogens: Communicating current research and technological advances (pp. 144–151).

    Google Scholar 

  8. Bruna, J. E., González, V., Rodríguez, F., Guarda, A., & Galotto, M. J. (2011). Eco-nanocomposites films containing copper as potential antimicrobial active packaging. In 11th Congresso Brasileiro de Polimeros (pp. 3770–3775).

    Google Scholar 

  9. Abreu, A. S., Oliveira, M., de Sá, A., Rodrigues, R. M., Cerqueira, M. A., Vicente, A. A., & Machado, A. V. (2015). Antimicrobial nanostructured starch based films for packaging. Carbohydrate Polymers, 129, 127–134. https://doi.org/10.1016/j.carbpol.2015.04.021

    Article  CAS  Google Scholar 

  10. Chowdhury, T., & Das, M. (2013). Effect of antimicrobials on mechanical, barrier and optical properties of corn starch based self-supporting edible film. International Journal of Food Studies, 2(2), 212–223.

    Article  Google Scholar 

  11. Nairetti, D., Mironescu, M., & Tita, O. (2014). Antimicrobial activity of active biodegradable starch films on pathogenic microorganisms. Annals of the Romanian Society for Cell Biology, XIX(1), 73–78.

    Google Scholar 

  12. Gómez-Heincke, D., Martínez, I., Partal, P., Guerrero, A., & Gallegos, C. (2015). Development of antimicrobial active packaging materials based on gluten proteins. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.7525

  13. de Azeredo, H. M. C. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240–1253.

    Article  Google Scholar 

  14. Jones, A., Mandal, A., & Sharma, S. (2015). Protein-based bioplastics and their antibacterial potential. Journal of Applied Polymer Science, 132, 1–11. https://doi.org/10.1002/app.41931

    Article  CAS  Google Scholar 

  15. Nadrajah, K. (2005). Development and characterization of nanocomposite materials. Louisiana State University.

    Google Scholar 

  16. Natrah, F. M. I., Harah, Z. M., Sidik, B. J., Izzatul, N. M. S., & Syahidah, A. (2015). Antibacterial activities of selected seaweed and seagrass from port dickson coastal water against different aquaculture pathogens.

    Google Scholar 

  17. Gade, R., Siva Tulasi, M., & Aruna Bhai, V. (2013). Seaweeds: A novel biomaterial. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 40–44.

    Google Scholar 

  18. Prachayawarakorn, J., & Pomdage, W. (2014). Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers. Materials and Design, 61, 264–269. https://doi.org/10.1016/j.matdes.2014.04.051

    Article  CAS  Google Scholar 

  19. Lopez-Gil, A., Rodriguez-Perez, M. A., De Saja, J. A., Bellucci, F. S., & Ardanuy, M. (2014). Strategies to improve the mechanical properties of starch-based materials: Plasticization and natural fibers reinforcement. Polimeros, 24, 36–42. https://doi.org/10.4322/polimeros.2014.054

    Article  Google Scholar 

  20. Fadeyibi, A., Osunde, Z. D., Egwim, E. C., & Idah, P. A. (2017). Performance evaluation of cassava starch-zinc nanocomposite film for tomatoes packaging. Journal of Agricultural Engineering, 48, 137–146. https://doi.org/10.4081/jae.2017.565

    Article  Google Scholar 

  21. Suryanto, H., Hutomo, P. T., Wanjaya, R., & Puspitasari, P. (2016). The structure of bioplastic from cassava starch with nanoclay reinforcement. In AIP Int. Proceeding Int. Mech. Eng. Eng. Educ. (Vol. 030027, pp. 1–5). https://doi.org/10.1063/1.4965761

  22. Akter, N., Khan, R. A., Tuhin, M. O., Haque, M. E., Nurnabi, M., Parvin, F., & Islam, R. (2014). Thermomechanical, barrier, and morphological properties of chitosan-reinforced starch-based biodegradable composite films. Journal of Thermoplastic Composite Materials, 27(7), 933–948. https://doi.org/10.1177/0892705712461512

    Article  CAS  Google Scholar 

  23. Jagadeesh, D., Prashantha, K., Mithil Kumar Nayunigari, N., & Maity, A. (2016). Effect of gelatin content on potato starch green composite films. Indian Journals of Advances in Chemical Science, 4(4), 355–361. Retrieved June 11, 2018, from http://www.ijacskros.com/. 4 Volume 4 Issue/IJACS-M207.pdf

  24. Tridge. (2022). Cassava global production and top producing countries. Retrieved Jan 26, 2022, from https://www.tridge.com/intelligences/mandioca/production

  25. Bertolini, A. (2010). Starches characterization, properties, and applications. CRC Press.

    Google Scholar 

  26. Sulaiman, S., Manut, A., & Nur Firdaus, A. R. (2009). Starch plastic packaging and agriculture applications. In ICIMT’09. International Conference, IEEE (pp. 513–516). http://digitalcommons.unl.edu/usdaarsfacpub/1459

  27. Bertoft, E. (2017). Understanding starch structure: Recent progress. Agronomy, 7(3), 1–29. https://doi.org/10.3390/agronomy7030056

    Article  CAS  Google Scholar 

  28. Jacobs, H., & Delcour, J. A. (1998). Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of Agricultural and Food Chemistry, 46(8), 2895–2905. American Chemical Society. https://doi.org/10.1021/jf980169k

  29. Hardwianti, R., Primaniyarta, M., & Palupi, N. S. (2014). Konsistensi Mutu Pilus Tepung Tapioka: Identifikasi Parameter Utama Penentu Kerenyahan. J. Mutu Pangan, 1(2), 91–99. Retrieved Aug 05, 2018, http://jurnalmutupangan.com/files/JMP-00000001/JMP-02-15-002/naskah-JMP-02-15-002.pdf

  30. Madhumitha, G., Fowsiya, J., Mohana Roopan, S., & Thakur, V. K. (2018). Recent advances in starch–clay nanocomposites. International Journal of Polymer Analysis and Characterization, 23(4), 331–345. https://doi.org/10.1080/1023666X.2018.1447260

  31. Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379. https://doi.org/10.1039/c3ta12555f

    Article  CAS  Google Scholar 

  32. Vieira, M. G. A., Da Silva, M. A., Dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254–263. Pergamon. https://doi.org/10.1016/j.eurpolymj.2010.12.011

  33. G. Wypych, Handbook of plasticizer (3rd ed.) (Vol. 1). ChemTec Publishing.

    Google Scholar 

  34. Nafchi, A. M., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch/Staerke, 65(1–2), 61–72. https://doi.org/10.1002/star.201200201

    Article  CAS  Google Scholar 

  35. Coral, D., Pineda-Gomez, P., & Rosales-Rivera, A. (2009). Determination of the gelatinization temperature of starch presented in maize flours. Journal of Physics: Conference Series, 012057. https://doi.org/10.1088/1742-6596/167/1/012057

  36. Jane, J. (1995). Starch properties, modifications, and applications. Journal of Macromolecular Science, Part A, 32(4), 751–757. https://doi.org/10.1080/10601329508010286

    Article  Google Scholar 

  37. Mikus, P. Y., Alix, S., Soulestin, J., Lacrampe, M. F., Krawczak, P., Coqueret, X., & Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114, 450–457. https://doi.org/10.1016/j.carbpol.2014.06.087

    Article  CAS  Google Scholar 

  38. Alves, V. D., Mali, S., Beléia, A., & Grossmann, M. V. E. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941–946. https://doi.org/10.1016/j.jfoodeng.2005.12.007

    Article  CAS  Google Scholar 

  39. Ren, J., Dang, K., Pollet, E., & Avérous, L. (2018). Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: Effect of plasticizer nature and nanoclay content. Polymers (Basel), 10(8), 808. https://doi.org/10.3390/polym10080808

    Article  CAS  Google Scholar 

  40. Suryanto, H., Jenuardy, S., Kustono, D., Puspitasari, P., & Lubis, D. Z. (2018). Sonication assisted synthesis of biocomposite from starch/nanoclay and its properties. International Review of Mechanical Engineering, 12(3), 272–278. https://doi.org/10.15866/ireme.v12i3.13641

    Article  CAS  Google Scholar 

  41. Monteiro, M. K. S., de Oliveira, V. R. L., dos Santos, F. K. G., de Leite, R. H., Aroucha, E. M. M., da Silva, R. R., & de Silva, K. N. (2017). Analysis of water barrier, mechanical and thermal properties of nanocoposites based on cassava starch and natural clay or modified by anionic exchange. Materials Research, 20(suppl2), 69–76. https://doi.org/10.1590/1980-5373-mr-2016-1087

    Article  Google Scholar 

  42. Yin, P., Zhou, W., Zhang, X., Guo, B., & Li, P. (2020). Bio-based thermoplastic starch composites reinforced by dialdehyde lignocellulose. Molecules, 25(14). https://doi.org/10.3390/molecules25143236

  43. Tuntachon, S., Sukolrat, A., Numnuam, A., & Kaewtatip, K. (2019). Effect of kaolin content and sonication on the properties of wheat gluten composites. Powder Technology, 351, 66–70. https://doi.org/10.1016/j.powtec.2019.04.007

    Article  CAS  Google Scholar 

  44. Azadi, A., Supriyadi, S., & Herawati, H. (2020). Starch based biocomposite from sago (Metroxylon sagu) with nano-chitosan reinforcement: Mechanical and thermal characteristics. The Journal of Pure and Applied Chemistry Research, 9(2), 98–107. https://doi.org/10.21776/ub.jpacr.2020.009.02.516

    Article  CAS  Google Scholar 

  45. de Freitas, R. R. M., do Carmo, K. P., de Souza Rodrigues, J., de Lima, V. H., Osmari da Silva, J., & Botaro, V. R. (2021). Influence of alkaline treatment on sisal fibre applied as reinforcement agent in composites of corn starch and cellulose acetate matrices. Plastics, Rubber and Composites, 50(1), 9–17. https://doi.org/10.1080/14658011.2020.1816119

  46. Ren, J., Dang, K. M., Pollet, E., & Avérous, L. (2018). Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: Effect of plasticizer nature and nanoclay content. Polymers (Basel), 10(8). https://doi.org/10.3390/polym10080808

  47. Suryanto, H., Rahmawan, A., Solichin, S., Sahana, R., & Yanuhar, U. (2018). Characteristics of nanoclay reinforced starch biocomposites through the extrusion process. In MATEC web of conferences (in Press).

    Google Scholar 

  48. Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Characterization of the sonicated yam bean starch bionanocomposites reinforced by nanocellulose water hyacinth fiber (WHF): The effect of various fiber loading. Journal of Engineering Science and Technology, 13(9), 2700–2715.

    Google Scholar 

  49. Rozilah, A., Aiza Jaafar, C. N., Sapuan, S. M., Zainol, I., & Ilyas, R. A. (2020). The effects of silver nanoparticles compositions on the mechanical, physiochemical, antibacterial, and morphology properties of sugar palm starch biocomposites for antibacterial coating. Polymers (Basel), 12(11), 1–21. https://doi.org/10.3390/polym12112605

  50. Sudhakar, Y. N., Selvakumar, M., & Bhat, D. K. (2018). Biopolymer electrolytes for solar cells and electrochemical cells. In Biopolymer electrolytes (pp. 117–149). Elsevier.

    Google Scholar 

  51. de Lima Barizão, C., Crepaldi, M. I., de O.S. Junior, O., de Oliveira, A. C., Martins, A. F., Garcia, P. S., & Bonafé, E. G. (2020). Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. International Journal of Biological Macromolecules, 165, 582–590. https://doi.org/10.1016/j.ijbiomac.2020.09.150

  52. Necas, J., & Bartosikova, L. (2013). Carrageenan: A review. Veterinarni medicina (Praha), 58(4), 187–205. Retrieved Jan 18, 2018, from http://www.agriculturejournals.cz/publicFiles/91236.pdf

  53. Sedayu, B. B., Cran, M. J., & Bigger, S. W. (2019). A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydrate Polymers, 216, 287–302. Elsevier Ltd. https://doi.org/10.1016/j.carbpol.2019.04.021

  54. Kassab, Z., Aziz, F., Hannache, H., Ben Youcef, H., & El Achaby, M. (2019). Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. International Journal of Biological Macromolecules, 123, 1248–1256. https://doi.org/10.1016/j.ijbiomac.2018.12.030

  55. Rhim, J. W., & Wang, L. F. (2014). Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science, 97–98(August), 174–181. https://doi.org/10.1016/j.clay.2014.05.025

    Article  CAS  Google Scholar 

  56. Fouda, M. M. G., El-Aassar, M. R., El Fawal, G. F., Hafez, E. E., Masry, S. H. D., & Abdel-Megeed, A. (2015). K-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. International Journal of Biological Macromolecules, 74, 179–184. https://doi.org/10.1016/j.ijbiomac.2014.11.040

    Article  CAS  Google Scholar 

  57. Kanmani, P., & Rhim, J. W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106(1), 190–199. https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  Google Scholar 

  58. Oun, A. A., & Rhim, J. W. (2017). Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocolloids, 67, 45–53. https://doi.org/10.1016/j.foodhyd.2016.12.040

    Article  CAS  Google Scholar 

  59. Rane, L. R., Savadekar, N. R., Kadam, P. G., & Mhaske, S. T. (2014). Preparation and characterization of K-carrageenan/nanosilica biocomposite film. Journal of Materials, 2014, 1–8. https://doi.org/10.1155/2014/736271

    Article  CAS  Google Scholar 

  60. Martins, J. T., Bourbon, A. I., Pinheiro, A. C., Souza, B. W. S., Cerqueira, M. A., & Vicente, A. A. (2013). Biocomposite films based on κ-carrageenan/locust bean gum blends and clays: Physical and antimicrobial properties. Food and Bioprocess Technology, 6(8), 2081–2092. https://doi.org/10.1007/s11947-012-0851-4

    Article  CAS  Google Scholar 

  61. Roy, S., & Rhim, J. W. (2020). Fabrication of copper sulfide nanoparticles and limonene incorporated pullulan/carrageenan-based film with improved mechanical and antibacterial properties. Polymers (Basel), 12(11), 1–14. https://doi.org/10.3390/polym12112665

    Article  CAS  Google Scholar 

  62. Sánchez-García, M. D., Hilliou, L., & Lagarón, J. M. (2010). Morphology and water barrier properties of nanobiocomposites of κ/l-hybrid carrageenan and cellulose nanowhiskers. Journal of Agriculture and Food Chemistry, 58(24), 12847–12857. https://doi.org/10.1021/jf102764e

    Article  CAS  Google Scholar 

  63. Yadav, M., & Chiu, F. C. (2019). Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydrate Polymers, 211, 181–194. https://doi.org/10.1016/j.carbpol.2019.01.114

    Article  CAS  Google Scholar 

  64. Roy, S., & Rhim, J. W. (2019). Preparation of carrageenan-based functional nanocomposite films incorporated with melanin nanoparticles. Colloids Surfaces B Biointerfaces, 176, 317–324. https://doi.org/10.1016/j.colsurfb.2019.01.023

    Article  CAS  Google Scholar 

  65. Sreekumar, K., & Bindhu, B. (2020). An overview on biopolymers and biopolymer blends/composites. Journal of Xidian University, 14(9), 686–691. https://doi.org/10.37896/jxu14.9/076

    Article  Google Scholar 

  66. Liu, B., Zhu, S., Zhong, F., Yokoyama, W., Huang, D., & Li, Y. (2021). Modulating storage stability of binary gel by adjusting the ratios of starch and kappa-carrageenan. Carbohydrate Polymers, 268, 118264. https://doi.org/10.1016/j.carbpol.2021.118264

    Article  CAS  Google Scholar 

  67. Lin, J. H., Liang, C. W., & Chang, Y. H. (2016). Effect of starch source on gel properties of kappa-carrageenan-starch dispersions. Food Hydrocolloids, 60, 509–515. https://doi.org/10.1016/j.foodhyd.2016.04.024

    Article  CAS  Google Scholar 

  68. Zia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 96, 282–301. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2016.11.095

  69. Abdou, E. S., & Sorour, M. A. (2014). Preparation and characterization of starch/carrageenan edible films. International Food Research Journal, 21(1), 189–193. Retrieved July 02, 2018 from http://www.ifrj.upm.edu.my/21. (01) 2014/27 IFRJ 21 (01) 2014 Manal 348.pdf

  70. Thakur, R., Saberi, B., Pristijono, P., Golding, J., Stathopoulos, C., Scarlett, C., Bowyer, M., & Vuong, Q. (2016). Characterization of rice starch-ι-carrageenan biodegradable edible film. Effect of stearic acid on the film properties. International Journal of Biological Macromolecules, 93(Pt A), 952–960. https://doi.org/10.1016/j.ijbiomac.2016.09.053

    Article  CAS  Google Scholar 

  71. Suryanto, H., Mahera, L. P., Kharismawan, F. A., Saragih, S. M., Solichin, S., & Yanuhar, U. (2019). Properties of starch/carrageenan blend biocomposite with nanoclay reinforcement. Journal of Engineering Science & Technology Review, 12(5), 122–126. https://doi.org/10.25103/jestr.125.14

    Article  CAS  Google Scholar 

  72. Suryanto, H., Rahmawan, A. W., Solichin, Sahana, R. T., Muhajir, M., & Yanuhar, U. (2019). Influence of carrageenan on the mechanical strength of starch bioplastic formed by extrusion process. In IOP Conference Series: Materials Science and Engineering (Vol. 494, no. 1). https://doi.org/10.1088/1757-899X/494/1/012075

  73. Suryanto, H., Sahana, R. T., Aminnudin, Suyetno, A., Widiyanti, & Yanuhar, U. (2019). Effect of carrageenan on the structure of cassava starch bioplastic after extrusion process. In AIP Conference Proceedings (Vol. 2120). https://doi.org/10.1063/1.5115761

  74. Velasco, E. M. Z., & Fundador, N. G. V. (2020). Development and use of antimicrobial durian starch-carrageenan/carvacrol films. Mindanao Journal of Science and Technology, 18(1), 118–128.

    Google Scholar 

  75. Mahieu, A., Terrié, C., & Youssef, B. (2015). Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen-scavenging properties: Influence of water content. Industrial Crops and Products, 72, 192–199. https://doi.org/10.1016/j.indcrop.2014.11.037

    Article  CAS  Google Scholar 

  76. Shahbazi, M., Majzoobi, M., & Farahnaky, A. (2018). Physical modification of starch by high-pressure homogenization for improving functional properties of κ-carrageenan/starch blend film. Food Hydrocolloids, 85, 204–214. https://doi.org/10.1016/j.foodhyd.2018.07.017

    Article  CAS  Google Scholar 

  77. Goonoo, N., Bhaw-Luximon, A., Passanha, P., Esteves, S., Schönherr, H., & Jhurry, D. (2017). Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides. Materials Science and Engineering C, 76, 13–24. https://doi.org/10.1016/j.msec.2017.02.156

    Article  CAS  Google Scholar 

  78. Suryanto, H., Kharismawan, F. A., Solichin, Rahmawan, A. W., Sahana, R. T., Muhajir, M., & Yanuhar, U. (2019). Influence of nanoclay on thermal decomposition of biocomposite matrix starch/carrageenan blend. In IOP Conference Series: Materials Science and Engineering (Vol. 494, no. 1). https://doi.org/10.1088/1757-899X/494/1/012077

  79. Suryanto, H., Fitrasakti, D. A. D., Ramadhani, A. R., Suyetno, A., & Aminnudin. (2020). The effect of extrusion speed on mechanical properties of starch-based biocomposite. In AIP Conference Proceedings (Vol. 2231). https://doi.org/10.1063/5.0002524

  80. Panatarani, C., Rochima, E., Ayunani, Yoga, S., & Joni, I. M. (2020). Reinforcement of carrageenan/starch based bio-composite by beads-milled chitosan. In 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019) (Vol. 194, no. FANRes 2019, pp. 272–276). https://doi.org/10.2991/aer.k.200325.054.

  81. Praseptiangga, D., Widyaastuti, D., Panatarani, C., & Joni, I. M. (2021). Development and characterization of semi-refined iota carrageenan/sio2-zno bionanocomposite film with the addition of cassava starch for application on minced chicken meat packaging. Foods, 10(11). https://doi.org/10.3390/foods10112776

  82. Lopes, T., Bufalino, L., Júnior, M., Tonoli, G., & Mendes, M. (2018). Eucalyptus wood nanofibrils as reinforcement of carrageenan and starch biopolymers for improvement of physical properties. Journal of Tropical Forest Science, 30(3), 292–303. Retrieved Jan 29, 2022 from https://www.jstor.org/stable/26512514?read-now=1&refreqid=excelsior%3Ade72e33b55906386426dd98513abfb55&seq=10#page_scan_tab_contents

  83. Chen, Q. J., Zong, Z. Y., Gao, X., Zhao, Y. L., & Wang, J. H. (2021). Preparation and characterization of nanostarch-based green hard capsules reinforced by cellulose nanocrystals. International Journal of Biological Macromolecules, 167, 1241–1247. https://doi.org/10.1016/j.ijbiomac.2020.11.078

    Article  CAS  Google Scholar 

  84. Abdullah, A., Firdiana, B., Nissa, R., Satoto, R., Karina, M., & Fransiska, D. (2021). Effect of Κ-carrageenan on mechanical, thermal and biodegradable properties of starch—carboxymethyl cellulose (CMC) bioplastic. Cellulose Chemistry and Technology, 55(9–10), 1109–1117.

    Article  CAS  Google Scholar 

  85. Praseptiangga, D., Mufida, N., Panatarani, C., & Joni, I. M. (2021). Enhanced multi functionality of semi-refined iota carrageenan as food packaging material by incorporating SiO2 and ZnO nanoparticles. Heliyon, 7(5), e06963. https://doi.org/10.1016/j.heliyon.2021.e06963

    Article  CAS  Google Scholar 

  86. Basiak, E., Galus, S., & Lenart, A. (2014). Characterisation of composite edible films based on wheat starch and whey-protein isolate. International Journal of Food Science & Technology, 1–9. https://doi.org/10.1111/ijfs.12628

  87. Orozco-Parra, J., Mejía, C. M., & Villa, C. C. (2020). Development of a bioactive synbiotic edible film based on cassava starch, inulin, and Lactobacillus casei. Food Hydrocolloids, 104, 105–754. https://doi.org/10.1016/J.FOODHYD.2020.105754

    Article  Google Scholar 

  88. Gutiérrez, T. J., Morales, N. J., Pérez, E., Tapia, M. S., & Famá, L. (2015). Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packaging and Shelf Life, 3, 1–8. https://doi.org/10.1016/j.fpsl.2014.09.002

    Article  Google Scholar 

  89. Keun Taik, L. (2010). Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Science, 86(1), 50–138. https://doi.org/10.1016/j.meatsci.2010.04.035. Epub 2010 Apr 28.

  90. Pathakoti, K., Manubolu, M., & Hwang, H. M. (2017). Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis, 25(2), 245–253. https://doi.org/10.1016/j.jfda.2017.02.004

    Article  CAS  Google Scholar 

  91. Jaramillo, C. M., González Seligra, P., Goyanes, S., Bernal, C., & Famá, L. (2015). Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch/Staerke, 67, 780–789. https://doi.org/10.1002/star.201500033

  92. Cortés-Rodríguez, M., Villegas-Yépez, C., Gil González, J. H., Rodríguez, P. E., & Ortega-Toro, R. (2020). Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon, 6(9), 2–7. https://doi.org/10.1016/j.heliyon.2020.e04884

  93. Ahmad, S. S., Yousuf, O., Islam, R. U., & Younis, K. (2021). Silver nanoparticles as an active packaging ingredient and its toxicity. Packaging Technology and Science, 1–11. https://doi.org/10.1002/pts.2603

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heru Suryanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suryanto, H., Yanuhar, U., Aminnudin, Pradana, Y.R.A., Bintara, R.D. (2023). Starch/Carrageenan Blend-Based Biocomposites as Packaging Materials. In: S. M., S., Ahmad, I. (eds) Composites from the Aquatic Environment. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-5327-9_6

Download citation

Publish with us

Policies and ethics