Skip to main content

Polycrystalline Shape-Memory Alloy and Strain Glass

  • Chapter
  • First Online:
Advanced Multicomponent Alloys

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Precipitation and coarsening kinetics of H-phase in Ni50Ti30Hf20 high-temperature shape-memory alloy and their effect on age hardening and transformation temperature behavior are discussed in the first part of this chapter. The critical size of H-phase precipitates responsible for breaking down the precipitate/matrix interface coherency, determined from experimental data, increases with increasing aging temperature. It is shown that transformation temperatures as well as transformation hysteresis can be controlled through the temperature and duration of aging. In the second part, the strain glass is discussed. Strain glass is a glassy phenomenon in shape-memory alloy systems, characterized by the frozen of martensitic nano-domains. It can be generated by doping sufficient defects into normal martensitic alloys and displays typical glassy features: invariability in average structure, dynamic freezing, broken ergodicity, and nano-domains. The strain glass can exhibits multiple functionalities such as new shape-memory effect and superelasticty due to the response of martensitic nano-domains to temperature and physical field. The third part is devoted to the elastocaloric effect in shape-memory alloys. Several criteria have been proposed that make it possible to predict a large elastocaloric effect during stress-induced martensitic transformation. Moreover, recent progress of advanced elastocaloric effect in additively manufactured, high-entropy, and other shape-memory alloys is also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tong YX, Shuitcev AV, Zheng YF (2020) Adv Eng Mater 22:1900496

    Article  CAS  Google Scholar 

  2. Shuitcev A, Vasin RN, Balagurov AM, Li L, Bobrikov IA, Sumnikov SV, Tong YX (2022) J Alloy Compd 899:163322

    Article  CAS  Google Scholar 

  3. Shuitcev A, Vasin RN, Fan XM, Balagurov AM, Bobrikov IA, Li L, Golovin IS, Tong YX (2020) Scripta Mater 178:67–70

    Article  CAS  Google Scholar 

  4. Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Acta Mater 61:7422–7431

    Article  CAS  Google Scholar 

  5. Stebner AP, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, Garg A, Karaca HE, Chumlyakov Y, Bhattacharya K, Noebe RD (2014) Acta Mater 76:40–53

    Article  CAS  Google Scholar 

  6. Shuitcev A, Ren Y, Sun B, Markova GV, Li L, Tong YX, Zheng YF (2022) J Mater Sci Technol 114:90–101

    Article  Google Scholar 

  7. Prasher M, Sen D, Bahadur J, Tewari R, Krishnan M (2019) J Alloy Compd 779:630–642

    Article  CAS  Google Scholar 

  8. Santamarta R, Arroyave R, Pons J, Evirgen A, Karaman I, Karaca HE, Noebe RD (2013) Acta Mater 61:6191–6206

    Article  CAS  Google Scholar 

  9. Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Acta Mater 61:3335–3346

    Article  CAS  Google Scholar 

  10. Moshref-Javadi M, Seyedein SH, Salehi MT, Aboutalebi MR (2013) Acta Mater 61:2583–2594

    Article  CAS  Google Scholar 

  11. Meng XL, Cai W, Chen F, Zhao LC (2006) Scripta Mater 54:1599–1604

    Article  CAS  Google Scholar 

  12. Kornegay SM, Kapoor M, Hornbuckle BC, Tweddle D, Weaver ML, Benafan O, Bigelow GB, Noebe RD, Thompson GB (2021) Mater Sci Eng, A 801:140401

    Article  CAS  Google Scholar 

  13. Shuitcev A, Gunderov DV, Sun B, Li L, Valiev RZ, Tong YX (2020) J Mater Sci Technol 52:218–225

    Article  Google Scholar 

  14. Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Acta Mater 83:48–60

    Article  CAS  Google Scholar 

  15. Yu TW, Gao YP, Casalena L, Anderson P, Mills M, Wang YZ (2021) Acta Mater 208:116651

    Article  CAS  Google Scholar 

  16. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  17. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511

    Article  CAS  Google Scholar 

  18. Sarkar S, Ren X, Otsuka K (2005) Evidence for strain glass in the ferroelastic-martensitic system Ti50−xNi50+x. Phys Rev Lett 95:205702

    Article  CAS  Google Scholar 

  19. Wang Y, Ren X, Otsuka K (2008) Strain glass: glassy martensite. Mater Sci Forum 583:67

    Article  CAS  Google Scholar 

  20. Wang D, Wang Y, Zhang Z et al (2010) Modeling abnormal strain states in ferroelastic systems: the role of point defects. Phys Rev Lett 105:205712

    Google Scholar 

  21. Wang Y, Huang CH, Wu HJ et al (2018) Premartensite serving as an intermediary state between strain glass and martensite in ferromagnetic Ni–Fe–Mn–Ga. Mater Des 152:102

    Article  CAS  Google Scholar 

  22. Zhou Y, Xue D, Ding X et al (2009) High temperature strain glass in Ti50(Pd50-xCrx) alloy and the associated shape memory effect and superelasticity. Appl Phys Lett 95:151906

    Article  CAS  Google Scholar 

  23. Wang Y, Zhou Y, Zhang J, Otsuka K et al (2010) Evolution of the relaxation spectrum during the strain glass transition of Ti48.5Ni51.5 alloy. Acta Mater 58, 4723

    Google Scholar 

  24. Wang D, Zhang Z, Zhang J et al (2010) Strain glass in Fe-doped Ti–Ni. Acta Mater 58:6206

    Article  CAS  Google Scholar 

  25. Zhou Y, Xue D, Ding X et al (2010) Strain glass in doped Ti50(Ni50-xDx) (D=Co, Cr, Mn) alloys–Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Mater 58:5433

    Article  CAS  Google Scholar 

  26. Wang Y, Ren X, Otsuka K et al (2007) Evidence for broken ergodicity in strain glass. Phys Rev B 76:132201

    Google Scholar 

  27. Tan Q, Li JF, Viehland D (2000) Role of potassium commodification on domain evolution and electrically induced strains in La modified lead zirconate titanate ferroelectric ceramics. J Appl Phys 88:3433

    Article  CAS  Google Scholar 

  28. Karmakar S, Taran S, Chaudhuri BK et al (2006) Disorder-induced short-range ferromagnetism and cluster spin-glass state in sol-gel derived La0.7Ca0.3Mn1-xCdxO3(0≤x≤0.2). Phys Rev B 74:104407

    Google Scholar 

  29. Zhou YM, Xue DZ, Tian Y (2014) Direct evidence for local symmetry breaking during a strain glass transition. Phys Rev Lett 112:025701

    Article  CAS  Google Scholar 

  30. Wang Y, Ren X, Otsuka K (2006) Shape memory effect and superelasticity in a strain glass alloy. Phys Rev Lett 97:225703

    Article  CAS  Google Scholar 

  31. Wang Y, Ren X, Otsuka K et al (2008) Temperature-stress phase diagram of strain glass Ti48.5Ni51.5. Acta Mater 56:2885

    Google Scholar 

  32. Wang Y, Song X, Ding X et al (2011) Stress changed damping and associated transforming behavior in a Ti48.5Ni51.5 strain glass. Appl Phys Lett 99:051905

    Google Scholar 

  33. Wang Y, Gao J, Wu H et al (2014) Strain glass transition in a multifunctional β-type Ti alloy. Sci Rep 4:3995

    Article  CAS  Google Scholar 

  34. Tang Z, Wang Y, Liao X et al (2015) Stress dependent transforming behaviors and associated functional properties of a nano-precipitates induced strain glass alloy. J Alloy Compd 622:622

    Article  CAS  Google Scholar 

  35. Wang Y, Huang C, Gao J et al (2012) Evidence for ferromagnetic strain glass in Ni-Co-Mn-Ga Heusler alloy system. Appl Phys Lett 101:101913

    Article  CAS  Google Scholar 

  36. Ren S, Xue D, Ji Y et al (2017) Low-field-triggered large magnetostriction in iron-palladium strain glass alloys. Phys Rev Lett 119:125701

    Article  Google Scholar 

  37. Li B, Kawakita Y, Ohira-Kawamura S, Sugahara T, Wang H, Wang J, Chen Y, Kawaguchi SI, Kawaguchi S, Ohara K (2019) Colossal barocaloric effects in plastic crystals. Nature 567:506

    Article  CAS  Google Scholar 

  38. Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies, Report of the U.S. Dpt. of Energy, March 2014 https://energy.gov/eere/buildings/downloads/non-vapor-compression-hvac-technologies-report

  39. Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311:1270–1271

    Google Scholar 

  40. Tishin AM, Spichkin YI (2014) Recent progress in magnetocaloric effect: mechanisms and potential applications. Int J Refrig 37:223–229

    Article  Google Scholar 

  41. Bonnot E, Romero R, Mañosa L, Vives E, Planes A (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100:125901

    Article  CAS  Google Scholar 

  42. Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M (2010) Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater 9:478–481

    Article  CAS  Google Scholar 

  43. Cui J, Wu Y, Muehlbauer J, Hwang Y, Radermacher R, Fackler S, Wuttig M, Takeuchi I (2012) Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Appl Phys Lett 101:073904

    Article  CAS  Google Scholar 

  44. Mañosa L, Jarque-Farnos S, Vives E, Planes A (2013) Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys. Appl Phys Lett 103:211904

    Article  CAS  Google Scholar 

  45. Kirsch S-M, Welsch F, Michaelis N, Schmidt M, Wieczorek A, Frenzel J, Eggeler G, Schütze A, Seelecke S (2018) NiTi-based elastocaloric cooling on the macroscale: from basic concepts to realization. Energy Technol 6:1567–1587

    Article  Google Scholar 

  46. Yang Z, Cong DY, Sun XM, Nie ZH, Wang YD (2017) Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni–Mn–In magnetic shape memory alloys. Acta Mater 127:33–42

    Article  CAS  Google Scholar 

  47. Vives E, Burrows S, Edwards RS, Dixon S, Mañosa L, Planes A, Romero R (2011) Temperature contour maps at the strain-induced martensitic transition of a Cu–Zn–Al shape-memory single crystal. Appl Phys Lett 98:011902

    Article  CAS  Google Scholar 

  48. Xiao F, Fukuda T, Kakeshita T, Jin X (2015) Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2Pd (at.%) alloy. Acta Mater 87:8–14

    Google Scholar 

  49. Tušek J, Žerovnik A, Čebron M, Brojan M, Žužek B, Engelbrecht K, Cadelli A (2018) Elastocaloric effect vs fatigue life: exploring the durability limits of Ni–Ti plates under pre-strain conditions for elastocaloric cooling. Acta Mater 150:295–307

    Article  CAS  Google Scholar 

  50. Qian S, Geng Y, Wang Y, Ling J, Hwang Y, Radermacher R, Takeuchi I, Cui J (2016) A review of elastocaloric cooling: materials, cycles and system integrations. Int J Refrig 64:1–19

    Article  CAS  Google Scholar 

  51. Mañosa L, Planes A (2017) Materials with giant mechanocaloric effects: cooling by strength. Adv Mater 29:1603607

    Article  CAS  Google Scholar 

  52. Chluba C, Ge W, de Miranda RL, Strobel J, Kienle L, Quandt E, Wuttig M (2015) Ultralow-fatigue shape memory alloy films. Science 348:1004–1007

    Article  CAS  Google Scholar 

  53. Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231

    Article  CAS  Google Scholar 

  54. Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X, Wang Y (2019) Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys. Phys Rev Lett 122:255703

    Article  CAS  Google Scholar 

  55. Recarte V, Perez-Landazábal JI, Sánchez-Alarcos V, Zablotskii V, Cesari E, Kustov S (2012) Entropy change linked to the martensitic transformation in metamagnetic shape memory alloys. Acta Mater 60:3168–3175

    Article  CAS  Google Scholar 

  56. Yang Z, Cong D, Yuan Y, Wu Y, Nie Z, Li R, Wang Y (2019) Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials. Mater Res Lett 7:137–144

    Article  CAS  Google Scholar 

  57. Cao Y, Zhou X, Cong D, Zheng H, Cao Y, Nie Z, Chen Z, Li S, Xu N, Gao Z, Cai W, Wang Y (2020) Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys. Acta Mater 194:178–189

    Article  CAS  Google Scholar 

  58. Li S, Cong D, Sun X, Zhang Y, Chen Z, Nie Z, Li R, Li F, Ren Y, Wang Y (2019) Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy. Mater Res Lett 7:482–489

    Article  CAS  Google Scholar 

  59. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    Article  CAS  Google Scholar 

  60. Yang Z, Cong D, Yuan Y, Li R, Zheng H, Sun X, Nie Z, Ren Y, Wang Y (2020) Large room-temperature elastocaloric effect in a bulk polycrystalline Ni–Ti–Cu–Co alloy with low isothermal stress hysteresis. Appl Mater Today 21:100844

    Article  Google Scholar 

Download references

Acknowledgements

Yunxiang Tong acknowledges the financial support from the National Science Foundation of China (Grant Numbers 52050410340, 51971072). Yu Wang acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 51931004, 51471127 and 91963111) and the Science and Technology Program of Yulin City (CXY-2020-049). Daoyong Cong acknowledges the financial support from the National Natural Science Foundation of China (Nos. 52031005, 51731005, and 52171172) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-18-008C1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxiang Tong , Yu Wang or Daoyong Cong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shuitcev, A., Tong, Y., Wang, Y., Cong, D. (2022). Polycrystalline Shape-Memory Alloy and Strain Glass. In: Jiao, Z., Yang, T. (eds) Advanced Multicomponent Alloys. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-4743-8_12

Download citation

Publish with us

Policies and ethics